Stitz-Zeager_College_Algebra_e-book

2 boyles law at a constant temperature the pressure p

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ns 255 the x-axis at (−1, 0). It should make you uncomfortable plugging x = −1 into the reduced formula for h(x), especially since we’ve made such a big deal concerning the stipulation about not letting x = −1 for that formula. What we are really doing is taking a Calculus short-cut to the more detailed kind of analysis near x = −1 which we will show below. Speaking of which, for the discussion that follows, we will use the formula h(x) = (2x+1)(x+1) , x = −1. x+2 • The behavior of y = h(x) as x → −2: As x → −2− , we imagine substituting a number (−3)(− 3 a little bit less than −2. We have h(x) ≈ (very small1)−)) ≈ (very small (−)) ≈ very big (−) ( and so as x → −2− , h(x) → −∞. On the other side of −2, as x → −2+ , we find that 3 h(x) ≈ very small (+) ≈ very big (+), so h(x) → ∞. • The behavior of y = h(x) as x → −1. As x → −1− , we imagine plugging in a number a bit less than x = −1. We have h(x) ≈ (−1)(very 1small (−)) = very small (+) Hence, as x → −1− , h(x) → 0+ . This means, as x → −1− , the graph is a bit above the point (−1, 0). As x → −1+ , we...
View Full Document

This note was uploaded on 05/03/2013 for the course MATH Algebra taught by Professor Wong during the Fall '13 term at Chicago Academy High School.

Ask a homework question - tutors are online