Stitz-Zeager_College_Algebra_e-book

# 2 tells 6 us y 2 3 is the horizontal asymptote the

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: r classmates, build a polynomial p with integer coeﬃcients such that x = −2 − i is a zero of p, p has a local maximum at the point (4, 0) and p(x) → −∞ as x→∞ 228 3.4.2 Polynomial Functions Answers 1. (a) i5 = i4 · i = 1 · i = i (b) i304 = (i4 )76 = 176 = 1 2. (a) z + w = 5 + 3i (b) w − z = −1 − 5i (c) z · w = 10 + 5i 3. (a) √ −49 = 7i √√ (b) −9 −16 = (3i) · (4i) = 12i2 = −12 4. (a) x = 2 ± 3i (c) (2i)3 = 8i3 = −8i (d) (−i)23 = −i23 = −i20 · i3 = (−1)(−i) = i z 2 11 =+i w 5 5 w 2 11 (e) = −i z 25 25 (f) w3 = 2 − 11i (d) √ (−9)(−16) = 144 = 12 √√ (d) 49 −4 = 7 · 2i = 14i (c) √ 1 29 (b) x = − ± i 3 3 5. (a) x2 − 2x + 5 = (x − (1 + 2i))(x − (1 − 2i)) Zeros: x = 1 ± 2i (b) x3 − 2x2 + 9x − 18 = (x − 2) x2 + 9 = (x − 2)(x − 3i)(x + 3i) Zeros: x = 2, ±3i √ √ 1 3 3 3 +6x2 +6x+5 = (x+5)(x2 +x+1) = (x+5) x − − 1 + i x− − − i (c) x 2 2 2 2 √ 1 3 Zeros: x = −5, x = − ± i 2 2 (d) 3x3 − 13x2 + 43x − 13 = (3x − 1)...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online