Stitz-Zeager_College_Algebra_e-book

25 v1 v2 if and only if v1 v2 0 notice that v1 v2 1

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: as the opposite sign of A C . The result now follows by applying Exercise 10 in Section 7.5. Example 11.6.3. Use Theorem 11.11 to classify the graphs of the following non-degenerate conics. √ 1. 21x2 + 10xy 3 + 31y 2 = 144 √ √ 2. 5x2 + 26xy + 5y 2 − 16x 2 + 16y 2 − 104 = 0 3. 16x2 + 24xy + 9y 2 + 15x − 20y = 0 Solution. This is a straightforward application of Theorem 11.11. 834 Applications of Trigonometry √ √ 1. We have A = 21, B = 10 3 and C = 31 so B 2 − 4AC = (10 3)2 − 4(21)(31) = −2304 < 0. Theorem 11.11 predicts the graph is an ellipse, which checks with our work from Example 11.6.1 number 2. 2. Here, A = 5, B = 26 and C = 5, so B 2 − 4AC = 262 − 4(5)(5) = 576 > 0. Theorem 11.11 classifies the graph as a hyperbola, which matches our answer to Example 11.6.2 number 1. 3. Finally, we have A = 16, B = 24 and C = 9 which gives 242 − 4(16)(9) = 0. Theorem 11.11 tells us that the graph is a parabola, matching our result from Example 11.6.2 number 2. 11.6.2 The Polar Form of Conics...
View Full Document

This note was uploaded on 05/03/2013 for the course MATH Algebra taught by Professor Wong during the Fall '13 term at Chicago Academy High School.

Ask a homework question - tutors are online