Stitz-Zeager_College_Algebra_e-book

# 9 unit vectors let v be a vector if v 1 we say that v

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: c y 9 π 3 5 1 −3 −1 1 3 x −1 −9 −2 θ = π + arcsin θ= −3 5π 3 θ = 2π − arcsin x 9 2 7 −9 (q) Lemniscate: r2 = sin(2θ) y (n) Lima¸on: r = 1 − 2 sin(θ) c y 3 θ= 2 2 7 1 5π 6 θ= π 6 1 −3 −1 1 3 x 1 x 2 −1 x −1 −3 −1 √ (o) Lima¸on: r = 2 3 + 4 cos(θ) c y (r) Lemniscate: r2 = 4 cos(2θ) y √ 2 3+4 2 θ= θ= 5π 6 3π 4 θ= π 4 √ 23 x √ −2 3 − 4 θ= √ 2 3+4 7π 6 −2 √ −2 3 √ −2 3 − 4 −2 11.5 Graphs of Polar Equations 823 π 13π 5π , 1, , , 1, 12 12 12 7π 11π 17π , −1, , −1, , 1, 12 12 12 19π 23π −1, , −1, 12 12 2. (a) r = 2 sin(2θ) and r = 1 y 1, 2 −2 x 2 −2 (b) r = 3 cos(θ) and r = 1 + cos(θ) y 3π , , 23 3 5π , , pole 23 3 2 1 −3 −2 −1 −1 1 2 3 x −2 −3 (c) r = 1 + sin(θ) and r = 1 − cos(θ) y 2 1 −2 −1 1 −1 −2 2 x Pole, √ 2 + 2 3π , , 2 4 √ 2 − 2 7π , 2 4 824 Applications of Trigonometry (d) r = 1 − 2 cos(θ) and r = 1 y 1, π , 2 1, 3π , (−1, 0) 2 3 1 −3 −1 1 3 x −1 −3 3 √ , arctan(3) , pole 10 (e) r = 3 cos(θ) and r = sin(θ) y 3 2 1 −3 −2 −1 1 2 3 x −1 −2 −3 (f) r2 = 2...
View Full Document

## This note was uploaded on 05/03/2013 for the course MATH Algebra taught by Professor Wong during the Fall '13 term at Chicago Academy High School.

Ask a homework question - tutors are online