Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: nd sine of the quadrantal angles, but for non-quadrantal angles, the task was much more involved. In these latter cases, we made good use of the fact that the point P (x, y ) = (cos(θ), sin(θ)) lies on the Unit Circle, x2 + y 2 = 1. If we substitute x = cos(θ) and y = sin(θ) into x2 + y 2 = 1, we get (cos(θ))2 + (sin(θ))2 = 1. An unfortunate4 convention, which the authors are compelled to perpetuate, is to write (cos(θ))2 as cos2 (θ) and (sin(θ))2 as sin2 (θ). Rewriting the identity using this convention results in the following theorem, which is without a doubt one of the most important results in Trigonometry. Theorem 10.1. The Pythagorean Identity: For any angle θ, cos2 (θ) + sin2 (θ) = 1. The moniker ‘Pythagorean’ brings to mind the Pythagorean Theorem, from which both the Distance Formula and the equation for a circle are ultimately derived.5 The word ‘Identity’ reminds us that, regardless of the angle θ, the equation in Theorem 10.1 is always true. If one of cos(θ) or sin(θ) is known, Theorem 10.1 can be used to determine the other, up to a sign, (...
View Full Document

This note was uploaded on 05/03/2013 for the course MATH Algebra taught by Professor Wong during the Fall '13 term at Chicago Academy High School.

Ask a homework question - tutors are online