Stitz-Zeager_College_Algebra_e-book

Buer solutions have a wide variety of applications

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: e they intersect only ln(117) at x = −4. To see what happened to the solution x = 1, we substitute it into our original equation to obtain log117 (−2) = log117 (−2). While these expressions look identical, neither is a real number,1 which means x = 1 is not in the domain of the original equation, and is not a solution. 2. Our first objective in solving 2 − ln(x − 3) = 1 is to isolate the logarithm. We get ln(x − 3) = 1, which, as an exponential equation, is e1 = x − 3. We get our solution x = e + 3. On the calculator, we see the graph of f (x) = 2 − ln(x − 3) intersects the graph of g (x) = 1 at x = e + 3 ≈ 5.718. 1 They do, however, represent the same family of complex numbers. We stop ourselves at this point and refer the reader to a good course in Complex Variables. 6.4 Logarithmic Equations and Inequalities y = f (x) = log117 (1 − 3x) and y = g (x) = log117 x2 − 3 369 y = f (x) = 2 − ln(x − 3) and y = g (x) = 1 3. We can start solving log6 (x + 4) + log6 (3 − x) = 1 by using the Product Rule for logarithms to rewrite the equation as log6 [(x...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern