{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Stitz-Zeager_College_Algebra_e-book

# Graph one cycle of the following functions state the

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: s(θ) sec(θ) = 1 (k) csc(θ) − sin(θ) = cot(θ) cos(θ) (b) tan(θ) cos(θ) = sin(θ) (c) csc(θ) cos(θ) = cot(θ) (d) cos(θ)(tan(θ) + cot(θ)) = csc(θ) (e) sin(θ)(tan(θ) + cot(θ)) = sec(θ) (f) tan3 (θ) = tan(θ) sec2 (θ) − tan(θ) (g) sin5 (θ) = 1 − cos2 (θ) 2 (h) sec10 (θ) = 1 + tan2 (θ) sin(θ) 4 sec2 (θ) (i) sec4 (θ) − sec2 (θ) = tan2 (θ) + tan4 (θ) (j) tan(θ) + cot(θ) = sec(θ) csc(θ) (l) cos(θ) − sec(θ) = − tan(θ) sin(θ) sin(θ) (m) csc(θ) − cot(θ) = 1 + cos(θ) 1 − sin(θ) = (sec(θ) − tan(θ))2 (n) 1 + sin(θ) cos(θ) + 1 1 + sec(θ) (o) = cos(θ) − 1 1 − sec(θ) 1 (p) = sec(θ) − tan(θ) sec(θ) + tan(θ) 1 − sin(θ) cos(θ) = (q) 1 + sin(θ) cos(θ) (r) cos2 (θ) tan3 (θ) = tan(θ) − sin(θ) cos(θ) (s) 1 1 − = 2 cot(θ) csc(θ) − cot(θ) csc(θ) + cot(θ) (t) cos(θ) sin(θ) + = sin(θ) + cos(θ) 1 − tan(θ) 1 − cot(θ) (u) 9 ln | sec(θ)| = − ln | cos(θ)| (v) − ln | csc(θ) + cot(θ)| = ln | csc(θ) − cot(θ)| 12. Verify the domains and ranges of the tangent...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online