Stitz-Zeager_College_Algebra_e-book

If rez 0 and imz 0 then argz 2k k is

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: r ≥ 0 and 0 ≤ θ < 2π . Use exact values if possible and round any approximate values to two decimal places. √ (a) (0, 5) (c) (7, −7) (e) (−3, − 3) √ (b) (3, 3) (d) (−8, 1) (f) (−3, 0) 4. Convert each equation in polar coordinates (r, θ) given below into an equation in rectangular coordinates (x, y ). (a) r = 7 2π (b) θ = 3 (c) r = 4 cos(θ) (e) r = 1 − 2 cos(θ) (d) r2 = sin(2θ) (f) r = 1 + sin(θ) 5. Convert each equation in rectangular coordinates (x, y ) given below into an in equation polar coordinates (r, θ). (a) x = −3 (c) x2 + y 2 = 117 (e) y = −3x2 (b) y = 7 (d) y = 4x − 19 (f) x2 + (y − 3)2 = 9 6. Convert the origin (0, 0) into polar coordinates in four different ways. 7. With the help of your classmates, use the Law of Cosines to develop a formula for the distance between two points in polar coordinates. 794 Applications of Trigonometry 11.4.2 1. (a) Answers y π 4π , −2, 3 3 7π 5π , 2, 2, − 3 3 2, 2 1 −1 (b) 7π , 4 π 5, − , 4 5, 3π 4 15π 5, 4 1 2 x y −5, 1 −1 1 2 3 x −1 −2 −3 (c) y 1π 1 3π , , −, 32 32 1π 1 7π ,...
View Full Document

Ask a homework question - tutors are online