Stitz-Zeager_College_Algebra_e-book

# In exercise 11 in section 15 the population of

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 2 2 √ 5 29 Zeros: x = −2, x = − ± 2 2 −3x4 − 8x3 − 12x2 − 12x − 5 = (x + 1)2 −3x2 − 2x − 5 √ √ 1 14 14 2 x − −1 + x− − − = −3(x + 1) i i 3 3 3 3 √ 1 14 Zeros: x = −1, x = − ± i 3 3 √ √ 1 1 8x4 + 50x3 + 43x2 + 2x − 4 = 8 x + x− (x − (−3 + 5))(x − (−3 − 5)) 2 4 √ 11 Zeros: x = − , , x = −3 ± 5 24 1 9x3 + 2x + 1 = x + 9x2 − 3x + 3 3 √ √ 1 11 1 11 1 =9 x+ x− + i x− − i 3 6 6 6 6 √ 1 1 11 Zeros: x = − , x = ± i 3 6 6 x4 − 2x3 +27x2 − 2x +26 = (x2 − 2x +26)(x2 +1) = (x − (1+5i))(x − (1 − 5i))(x + i)(x − i) Zeros: x = 1 ± 5i, x = ±i 2x4 + 5x3 + 13x2 + 7x + 5 = x2 + 2x + 5 2x2 + x + 1 = √ √ 1 7 1 7 2(x − (−1 + 2i))(x − (−1 − 2i)) x − − + i x− − −i 4 4 4 4 √ 1 7 Zeros: x = −1 ± 2i, − ± i 4 4 4 x+ (j) x+ 229 3 2 x− 230 Polynomial Functions Chapter 4 Rational Functions 4.1 Introduction to Rational Functions If we add, subtract or multiply polynomial functions according to the function arithmetic rules deﬁned i...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online