Stitz-Zeager_College_Algebra_e-book

In exercise 11 in section 15 the population of

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 2 2 √ 5 29 Zeros: x = −2, x = − ± 2 2 −3x4 − 8x3 − 12x2 − 12x − 5 = (x + 1)2 −3x2 − 2x − 5 √ √ 1 14 14 2 x − −1 + x− − − = −3(x + 1) i i 3 3 3 3 √ 1 14 Zeros: x = −1, x = − ± i 3 3 √ √ 1 1 8x4 + 50x3 + 43x2 + 2x − 4 = 8 x + x− (x − (−3 + 5))(x − (−3 − 5)) 2 4 √ 11 Zeros: x = − , , x = −3 ± 5 24 1 9x3 + 2x + 1 = x + 9x2 − 3x + 3 3 √ √ 1 11 1 11 1 =9 x+ x− + i x− − i 3 6 6 6 6 √ 1 1 11 Zeros: x = − , x = ± i 3 6 6 x4 − 2x3 +27x2 − 2x +26 = (x2 − 2x +26)(x2 +1) = (x − (1+5i))(x − (1 − 5i))(x + i)(x − i) Zeros: x = 1 ± 5i, x = ±i 2x4 + 5x3 + 13x2 + 7x + 5 = x2 + 2x + 5 2x2 + x + 1 = √ √ 1 7 1 7 2(x − (−1 + 2i))(x − (−1 − 2i)) x − − + i x− − −i 4 4 4 4 √ 1 7 Zeros: x = −1 ± 2i, − ± i 4 4 4 x+ (j) x+ 229 3 2 x− 230 Polynomial Functions Chapter 4 Rational Functions 4.1 Introduction to Rational Functions If we add, subtract or multiply polynomial functions according to the function arithmetic rules defined i...
View Full Document

Ask a homework question - tutors are online