{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Stitz-Zeager_College_Algebra_e-book

Let a abc def e1 01 10 e2 50 01 e3 1 2 0 1 compute

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3z = 0 7 x − 2y + 3 z = 11 16 y− 5z = −5 (f) z= 1 0 x + y + 2z = y − 3z = 6 (g) 2 z = −2 1 x − 2y + 1z = −1 2 2 3 3 (h) y + 5z = 5 0= 1 x − y + z = −4 y − 7z = 17 (i) z = −2 x − 2y + 2z = −2 1 y= (j) 2 z= 1 Consistent independent Solution (−2, 7) Consistent independent Solution (1, 2, 0) Consistent dependent Solution (−t + 5, −3t + 15, t) for all real numbers t Inconsistent No solution Consistent dependent Solution (−4t − 17, 3t, t) for all real numbers t Consistent independent Solution (2, −1, 1) Consistent independent Solution (1, 3, −2) Inconsistent no solution Consistent independent Solution (1, 3, −2) Consistent independent 1 Solution −3, 2 , 1 8.1 Systems of Linear Equations: Gaussian Elimination x − 1y + 1z = 1 2 2 2 2 (k) y − 3z = 0 z=1 x − 3y − 4z = 3 4 y + 11 z = 13 (l) 13 0= 0 x+y+z = 4 1 y + 2z = 3 (m) 2 0=1 8 x−y+z = y − 2z = −5 (n) z= 1 x − 3y + 1z = −1 2 2 2 (o) y + z = − 11 2 0= 0 16 25 2 x1 + 3 x2 − 3 x3 − x4 = 3 x2 + 4x3 −...
View Full Document

{[ snackBarMessage ]}