Stitz-Zeager_College_Algebra_e-book

Our original inequality is thus equivalent to f x 0

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ed on page 678. Again, we graph two cycles to illustrate the discrepancy discussed on page 678. 18 This will be the last time we graph two cycles to illustrate the discrepancy discussed on page 678. 17 5 4 3 2 x 696 Foundations of Trigonometry y π 2. (a) y = tan x − 3 Period: π 1 −π 6 (b) y = 2 tan −1 π 12 π 3 7π 12 x 5π 6 y 1 x −3 4 Period: 4π −2π −π π −1 2π x −3 −5 y 1 (c) y = tan(−2x − π ) + 1 3 is equivalent to 1 y = − tan(2x + π ) + 1 3 via the Even / Odd identity for tangent. π Period: 2 4 3 1 2 3 π π π π − 34 − 58 − 2 − 38 −π 4 x 10.5 Graphs of the Trigonometric Functions (d) y = sec x − π 2 Start with y = cos x − Period: 2π 697 y π 2 1 π 2 −1 π 5π x 2 2π 3π 2 y π 3 π Start with y = − sin x + 3 Period: 2π (e) y = − csc x + 1 −π 3 1 π x+ 2 3 1 Start with y = − cos 3 Period: 4π π 6 −1 2π 3 7π 6 5π 3 x y 1 (f) y = − sec 3 1 π x+ 2 3 1 3 π − 23 −1 3 π 3 4π 3 7π 3 10π x 3 698 Foundations of Trigonometry y (g) y = csc(...
View Full Document

Ask a homework question - tutors are online