Solution 1 in example 331 we determined all of the

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 6x2 7x 0 Note that by arranging things in this manner, each term in the last row is obtained by adding the two terms above it. Notice also that the quotient polynomial can be obtained by dividing each of the first three terms in the last row by x and adding the results. If you take the time to work back through the original division problem, you will find that this is exactly the way we determined the quotient polynomial. This means that we no longer need to write the quotient polynomial down, nor the x in the divisor, to determine our answer. −2 x3 +4x2 − 5x −14 2x2 12x 14 x3 6x2 7x 0 We’ve streamlined things quite a bit so far, but we can still do more. Let’s take a moment to remind ourselves where the 2x2 , 12x, and 14 came from in the second row. Each of these terms was obtained by multiplying the terms in the quotient, x2 , 6x and 7, respectively, by the −2 in x − 2, then by −1 when we changed the subtraction to addition. Multiplying by −2 then by −1 is the same as multiplying by 2, and so we...
View Full Document

This note was uploaded on 05/03/2013 for the course MATH Algebra taught by Professor Wong during the Fall '13 term at Chicago Academy High School.

Ask a homework question - tutors are online