Stitz-Zeager_College_Algebra_e-book

# This means we have a pair of vertical asymptotes to

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ns, we get 3h = (h + 200) 3. The result is a linear equation for h, so we proceed to expand the right hand side and gather all the terms involving h to one side. √ 3h = (h + 200) 3 √ √ 3h = h 3 + 200 3 √ √ 3h − h 3 = 200 3 √ √ (3 − 3)h = 200 3 √ 200 3 √ ≈ 273.20 h= 3− 3 Hence, the tree is approximately 273 feet tall. As we did in Section 10.2.1, we may consider all six circular functions as functions of real numbers. At this stage, there are three equivalent ways to deﬁne the functions sec(t), csc(t), tan(t) and cot(t) for real numbers t. First, we could go through the formality of the wrapping function on page 604 and deﬁne these functions as the appropriate ratios of x and y coordinates of points on the Unit Circle; second, we could deﬁne them by associating the real number t with the angle θ = t radians so that the value of the trigonometric function of t coincides with that of θ; lastly, we could simply deﬁne them using the Reciprocal and Quotient Identities as combinations of the functions f (t) = cos(t) and g (t) = sin(t). Prese...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online