To check our answer we note that for any integer k

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3π 4, 2 1 π 4 √ π 2 3π 4 π 5π 4 3π 2 7π 4 x 2π −1 5π 4 ,− 2 3π 2 , −1 √ 7π ,− 2 4 −2 −3 0 undefined The ‘fundamental cycle’ of y = csc(x). Once again, our domain and range work in Section 10.3.1 is verified geometrically in the graph of y = G(x) = csc(x). y x The graph of y = csc(x). Note that, on the intervals between the vertical asymptotes, both F (x) = sec(x) and G(x) = csc(x) are continuous and smooth. In other words, they are continuous and smooth on their domains.14 The following theorem summarizes the properties of the secant and cosecant functions. Note that 14 Just like the rational functions in Chapter 4 are continuous and smooth on their domains because polynomials are continuous and smooth everywhere, the secant and cosecant functions are continuous and smooth on their domains since the cosine and sine functions are continuous and smooth everywhere. 684 Foundations of Trigonometry all of these properties are direct results of them being reciprocals of the cosine and sine f...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online