Stitz-Zeager_College_Algebra_e-book

# Ultimately we are after the speed of the river so

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: row, then det(A ) = det(A) • If A has two identical rows, or a row consisting of all 0’s, then det(A) = 0. • If A is upper or lower triangular,a then det(A) is the product of the entries on the main diagonal.b • If B is an n × n matrix, then det(AB ) = det(A) det(B ). • det (An ) = det(A)n for all natural numbers n. • A is invertible if and only if det(A) = 0. In this case, det A−1 = a b 1 . det(A) See Exercise 5 in 8.3. See page 483 in Section 8.3. Unfortunately, while we can easily demonstrate the results in Theorem 8.7, the proofs of most of these properties are beyond the scope of this text. We could prove these properties for generic 2 × 2 or even 3 × 3 matrices by brute force computation, but this manner of proof belies the elegance and 8.5 Determinants and Cramer’s Rule 511 symmetry of the determinant. We will prove what few properties we can after we have developed some more tools such as the Principle of Mathematical Induction in Section 9.3.2 For the moment, let us demonstrate some of the properties listed in Theorem 8.7 on the ma...
View Full Document

## This note was uploaded on 05/03/2013 for the course MATH Algebra taught by Professor Wong during the Fall '13 term at Chicago Academy High School.

Ask a homework question - tutors are online