Stitz-Zeager_College_Algebra_e-book

We continue to our next possible zero 1 as before the

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: of p. √ 3 29 5. Find a quadratic polynomial with integer coefficients which has x = ± as its real zeros. 5 5 206 3.2.2 Polynomial Functions Answers 1. (a) 5x4 − 3x3 + 2x2 − 1 = (x2 + 4)(5x2 − 3x − 18) + (12x + 71) (b) −x5 + 7x3 − x = (x3 − x2 + 1)(−x2 − x + 6) + (7x2 − 6) 9 (c) 9x3 + 5 = (2x − 3)( 2 x2 + 27 4x + 81 8) + 283 8 (d) 4x2 − x − 23 = (x2 − 1)(4) + (−x − 19) 2. (a) p(−1) − 180 (b) p(8) = 0 (c) p( 1 ) = 2 825 32 (d) p( 2 ) = 0 3 (e) p(0) = 48 (f) p(− 3 ) = 0 5 3. (a) x3 − 6x2 + 11x − 6 = (x − 1)(x − 2)(x − 3) (b) x3 − 24x2 + 192x − 512 = (x − 8)3 (c) 4x4 − 28x3 + 61x2 − 42x + 9 = 4(x − 1 )2 (x − 3)2 2 2 (d) 3x3 + 4x2 − x − 2 = 3(x − 3 )(x + 1)2 (e) x4 − x2 = x2 (x − 1)(x + 1) √ √ (f) x2 − 2x − 2 = (x − (1 − 3))(x − (1 + 3)) 3 (g) 125x5 − 275x4 − 2265x3 − 3213x2 − 1728x − 324 = 125(x + 5 )3 (x − 6)(x + 2) 4. Something like p(x) = −(x + 2)2 (x − 3)(x + 3)(x − 4) will work. 5. q (x) = 5x2 − 6x − 4 3.3 Real Zeros of Polynomials 3.3 207 Real Zeros of Polynomials In Secti...
View Full Document

This note was uploaded on 05/03/2013 for the course MATH Algebra taught by Professor Wong during the Fall '13 term at Chicago Academy High School.

Ask a homework question - tutors are online