{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Stitz-Zeager_College_Algebra_e-book

# We get tant x2 1 but since t lies in 0 32 tant

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: t + 4 4 (c) tan(−t2 + 1) = − tan(t2 − 1) (e) sec(−6t) = sec(6t) (f) cot(9 − 7t) = − cot(7t − 9) 3. Verify the Cofunction Identities for tangent, secant, cosecant and cotangent. 4. Verify the Diﬀerence Identities for sine and tangent. 5. Use the Sum and Diﬀerence Identities to ﬁnd the exact values of the following. You may have need of the Quotient, Reciprocal or Even / Odd Identities as well. 7π 12 17π (b) tan 12 (a) cos (c) sin π 12 (e) csc (d) cot 11π 12 (f) sec − 6. Show that sin(t + h) − sin(t) = cos(t) h sin(h) h 7. Show that cos(t + h) − cos(t) = cos(t) h cos(h) − 1 h 8. Show that tan(t + h) − tan(t) = h tan(h) h + sin(t) 5π 12 π 12 cos(h) − 1 h − sin(t) sin(h) h sec2 (t) 1 − tan(t) tan(h) 9. Verify the following identities. Assume all quantities are deﬁned. (a) sin(α + β ) + sin(α − β ) = 2 sin(α) cos(β ) cos(α + β ) 1 − tan(α) tan(β ) (b) = cos(α − β ) 1 + tan(α) tan(β ) tan(α + β ) sin(α) cos(α) + sin(β ) cos(β...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online