Unformatted text preview: =
2
6
√
2
π
=
2
4 1
2 =
π
2
π
3 = √ 2
2 (g) arccos = π
4 = π
6 = π
6 √ 3
2 (h) arccos π
3 (i) arccos (1) = 0
√ 3
3 (e) arctan (f) arctan (1) =
(g) arctan √ π
4 3= π
3 √ 3
3 (e) arccot (f) arccot (1) =
√ =
π
4 π
6
√
π
(c) arcsec 2 =
4
√
π
(d) arccsc 2 =
4
(g) arccot 3= π
3 726 Foundations of Trigonometry (e) arcsec
(f) arccsc √
23
3
√
23
3 =
= (g) arcsec (1) = 0
π
(h) arccsc (1) =
2 π
6
π
3 √
23
(c) arcsec −
3 4π
3
√
5π
(b) arcsec − 2 =
4
7π
7. (a) arccsc (−2) =
6
6. (a) arcsec (−2) = (d) arccsc (−1) = (e)
(f)
(g)
(h) 3
4 = 5π
6 (d) arcsec (−1) = π
√
23
(c) arccsc −
3 = =− (d) arccsc (−1) = − 7π
π
=−
6
6
7π
is und.
sin arcsin
6
π
3π
arccos cos −
=
4
4
2π
π
arcsin sin
=
3
3
3π
π
=−
arctan tan
4
4
cos (arccos (π )) is und.
sec (arccos (0)) is und.
√
√
3
tan arcsin
=3
2 (i) cos arctan 4π
3 3π
2 √
23
(c) arcsec −
3 10. (a) arcsin sin (d) = √
23
(c) arccsc −
3 √
π
(b) arccsc − 2 = −
4 (c...
View
Full Document
 Fall '13
 Wong
 Algebra, Trigonometry, Cartesian Coordinate System, The Land, The Waves, René Descartes, Euclidean geometry

Click to edit the document details