Stitz-Zeager_College_Algebra_e-book

We now look to see where if ever f is undened and

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3 4π 3 10π 3 x −1 3 y 5 4 3 2π 3 5π 6 π 7π 6 4π 3 x 10.5 Graphs of the Trigonometric Functions π (i) y = sin −x − −2 4 Period: 2π Amplitude: 1 π Phase Shift: − (You need to use 4 π y = − sin x + − 2 to find this.)16 4 Vertical Shift: −2 2 π cos − 4x + 1 3 2 π Period: 2 2 Amplitude: 3 π Phase Shift: (You need to use 8 2 π y = cos 4x − + 1 to find this.)17 3 2 Vertical Shift: 1 695 y π π π π π − 94 − 74 − 54 − 34 − 4 −1 3π 4 5π 4 7π 4 x −2 −3 (j) y = π 1 3 − (k) y = − cos 2x + 2 3 2 Period: π 3 Amplitude: 2 π Phase Shift: − 6 1 Vertical Shift: − 2 π 4 y 5 3 1 1 3 π π π − 38 − 4 − 8 π 8 π 4 3π 8 π 2 5π 8 x y 1 −π 6 −1 2 π 12 π 3 7π 12 x 5π 6 −2 (l) y = 4 sin(−2πx + π ) Period: 1 Amplitude: 4 1 Phase Shift: (You need to use 2 y = −4 sin(2πx − π ) to find this.)18 Vertical Shift: 0 y 4 1 −2 −1 4 1 4 1 2 3 4 1 −4 16 Two cycles of the graph are shown to illustrate the discrepancy discuss...
View Full Document

Ask a homework question - tutors are online