Stitz-Zeager_College_Algebra_e-book

# We now look to see where if ever f is undened and

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3 4π 3 10π 3 x −1 3 y 5 4 3 2π 3 5π 6 π 7π 6 4π 3 x 10.5 Graphs of the Trigonometric Functions π (i) y = sin −x − −2 4 Period: 2π Amplitude: 1 π Phase Shift: − (You need to use 4 π y = − sin x + − 2 to ﬁnd this.)16 4 Vertical Shift: −2 2 π cos − 4x + 1 3 2 π Period: 2 2 Amplitude: 3 π Phase Shift: (You need to use 8 2 π y = cos 4x − + 1 to ﬁnd this.)17 3 2 Vertical Shift: 1 695 y π π π π π − 94 − 74 − 54 − 34 − 4 −1 3π 4 5π 4 7π 4 x −2 −3 (j) y = π 1 3 − (k) y = − cos 2x + 2 3 2 Period: π 3 Amplitude: 2 π Phase Shift: − 6 1 Vertical Shift: − 2 π 4 y 5 3 1 1 3 π π π − 38 − 4 − 8 π 8 π 4 3π 8 π 2 5π 8 x y 1 −π 6 −1 2 π 12 π 3 7π 12 x 5π 6 −2 (l) y = 4 sin(−2πx + π ) Period: 1 Amplitude: 4 1 Phase Shift: (You need to use 2 y = −4 sin(2πx − π ) to ﬁnd this.)18 Vertical Shift: 0 y 4 1 −2 −1 4 1 4 1 2 3 4 1 −4 16 Two cycles of the graph are shown to illustrate the discrepancy discuss...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online