Stitz-Zeager_College_Algebra_e-book

We see at once that the solution to f x 0 is 2 3 our

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: −3 −4 −5 −6 −7 −8 y 2 1 −2 −1 −1 1 2 3 x 4 −2 −3 −4 −5 −6 −7 −8 −9 y 4 3 2 1 −3 −2 −1 −1 −2 −3 −4 1 x 2.3 Quadratic Functions 151 y (e) f (x) = 2x2 − 4x − 1 = 2(x − 1)2 − 3 √ √ x-intercepts 2−2 6 , 0 and 2+2 6 , 0 y -intercept (0, −1) Domain: (−∞, ∞) Range: [−3, ∞) Increasing on [1, ∞) Decreasing on (−∞, 1] Vertex (1, −3) is a minimum Axis of symmetry x = 1 (f) f (x) = −3x2 + 4x − 7 = −3(x − 2 )2 − 3 No x-intercepts y -intercept (0, −7) Domain: (−∞, ∞) Range: (−∞, − 17 ] 3 2 Increasing on (−∞, 3 ] Decreasing on [ 2 , ∞) 3 Vertex ( 2 , − 17 ) is a maximum 3 3 Axis of symmetry x = 2 3 4 3 2 1 −1 −1 1 2 x 3 −2 −3 y 17 3 1 −1 x 2 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 2 (g) f (x) = −3x2 + 5x + 4 = −3 x − 5 + √6 √ x-intercepts 5−6 73 , 0 and 5+6 73 , 0 y -intercept (0, 4) Domain: (−∞, ∞) 73 Range: −∞, 12 5 Increasing on −∞, 6 Decre...
View Full Document

Ask a homework question - tutors are online