We shall have occasion however to refer to the

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ized below. 2 As we shall see shortly, when solving equations involving secant and cosecant, we usually convert back to cosines and sines. However, when solving for tangent or cotangent, we usually stick with what we’re dealt. 638 Foundations of Trigonometry Tangent and Cotangent Values of Common Angles θ(degrees) θ(radians) 0◦ 0 45◦ 60◦ 90◦ undefined √ 3 1 √ 3 √ undefined π 6 π 4 π 3 π 2 cot(θ) √ 0 30◦ tan(θ) 0 3 3 1 3 3 Coupling Theorem 10.6 with the Reference Angle Theorem, Theorem 10.2, we get the following. Theorem 10.7. Generalized Reference Angle Theorem. The values of the circular functions of an angle, if they exist, are the same, up to a sign, of the corresponding circular functions of its reference angle. More specifically, if α is the reference angle for θ, then: cos(θ) = ± cos(α), sin(θ) = ± sin(α), sec(θ) = ± sec(α), csc(θ) = ± csc(α), tan(θ) = ± tan(α) and cot(θ) = ± cot(α). The choice of the (±) depends on the quadrant in which the terminal side of θ lies. We put Theorem 10.7 to good use in the following example. E...
View Full Document

This note was uploaded on 05/03/2013 for the course MATH Algebra taught by Professor Wong during the Fall '13 term at Chicago Academy High School.

Ask a homework question - tutors are online