{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Stitz-Zeager_College_Algebra_e-book

# A since we are given the component form of v well use

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: all that this means f (−θ) = −f (θ) for θ in the domain of f . 820 Applications of Trigonometry 11.5.2 Answers 1. (a) Circle: r = 6 sin(θ) y (d) Rose: r = 4 cos(2θ) y 6 4 θ= −6 6 x 3π 4 θ= 4 (e) Rose: r = 5 sin(3θ) y 2 θ= 2 x 2π 3 5 θ= π 3 −5 −2 −5 (f) Rose: r = cos(5θ) y (c) Rose: r = 2 sin(2θ) y 2 1 θ= θ= 2 −2 x −4 (b) Circle: r = 2 cos(θ) y −2 x 5 −4 −6 −2 π 4 x 7π 10 θ= 9π 10 3π 10 θ= −1 π 10 1 −1 x 11.5 Graphs of Polar Equations 821 (j) Cardioid: r = 5 + 5 sin(θ) y (g) Rose: r = sin(4θ) y 1 θ= 10 3π 4 θ= π 4 5 −1 1 x −10 −5 5 10 x 4 x 2 x −5 −1 −10 (h) Rose: r = 3 cos(4θ) y θ= θ= 5π 8 3 θ= (k) Cardioid: r = 2 + 2 cos(θ) y 4 3π 8 7π 8 θ= −3 2 π 8 3 x −4 −2 2 −2 −3 −4 (i) Cardioid: r = 3 − 3 cos(θ) y (l) Cardioid: r = 1 − sin(θ) y 6 3 −6 2 1 −3 3 6 x −2 −1 1 −3 −1 −6 −2 822 Applications of Trigonometry (m) Lima¸on: r = 1 − 2 cos(θ) c y 3 θ= (p) Lima¸on: r = 2 + 7 sin(θ)...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online