Stitz-Zeager_College_Algebra_e-book

# A b c d 653 d e f g h o csc 7 4 2 p

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 θ= 5π 6 π 6 π 6 x x 1 1 π In the above scenario, the angle π is called the reference angle for the angle 56 . In general, for 6 a non-quadrantal angle θ, the reference angle for θ (usually denoted α) is the acute angle made between the terminal side of θ and the x-axis. If θ is a Quadrant I or IV angle, α is the angle between the terminal side of θ and the positive x-axis; if θ is a Quadrant II or III angle, α is the angle between the terminal side of θ and the negative x-axis. If we let P denote the point (cos(θ), sin(θ)), then P lies on the Unit Circle. Since the Unit Circle possesses symmetry with respect to the x-axis, y -axis and origin, regardless of where the terminal side of θ lies, there is a point Q symmetric with P which determines θ’s reference angle, α as seen below. y y 1 1 P =Q P α α 1 x Reference angle α for a Quadrant I angle Q α 1 x Reference angle α for a Quadrant II angle 10.2 The Unit Circle: Cosine and Sine 617 y y 1 1 Q Q α α 1 α x 1 α P x P Reference angle α for a Quadrant III angle Reference angle α for a Quadrant IV angle We have just outlined the proof of the following theorem. Theorem 10.2. Reference Angle Theorem. Suppose α is the reference angle for θ. Then cos(θ) = ± cos(α) and sin(θ) = ± sin(α), where the choice of the (±) depends on the quadrant in which the terminal side of θ lies. In light of Theorem 10.2, it pays to know the cosine and sine values for certain common an...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern