Stitz-Zeager_College_Algebra_e-book

F x x2 4 x2 solution 1 to graph f x 3 we graph

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 0 −1 3 1 2 3 11 , 0 3 x 1 2 3 (3, 0) x 110 Relations and Functions (g) d(x) = −2f (x) (j) n(x) = 4f (x − 3) − 6 y y (−3, 0) (3, 0) (3, 6) 6 −3 −2 −1 1 2 x 3 −1 5 −2 4 −3 3 −4 2 −5 1 −6 1 (0, −6) 2 3 4 5 6 x −1 −2 −3 −4 −5 −6 (h) k (x) = f 2 3x (6, −6) (0, −6) y (k) p(x) = 4 + f (1 − 2x) = f (−2x + 1) + 4 (0, 3) 3 y 2 1,7 2 7 1 6 −4 −3 −2 −1 −9,0 −1 2 1 2 3 4 5 x 9,0 2 (i) m(x) = − 1 f (3x) 4 4 (−1, 4) 3 y (2, 4) 2 1 (−1, 0) (1, 0) −1 1 x −1 1 2 x −1 −1 3 0, − 4 1 (l) q (x) = − 2 f x+4 2 − 3 = −1f 2 −10 9 −8 −7 −6 −5 −4 −3 −2 −1 − −1 −2 (−10, −3) −3 −4 −4, − 9 2 √ √ 4. g (x) = −2 3 x + 3 − 1 or g (x) = 2 3 −x − 3 − 1 1 2x y 1 2 x (2, −3) +2 −3 Chapter 2 Linear and Quadratic Functions 2.1 Linear Functions We now begin the study of families of functions. Our first family, linear functions, are old friends as we shall soon see. Recall from Geometry that two distinct points in the p...
View Full Document

Ask a homework question - tutors are online