Stitz-Zeager_College_Algebra_e-book

Logx loge y f x lnx and y g x 4 which

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: as shown below. The y -intercept (0, 1) on the graph of f corresponds to an x-intercept of (1, 0) on the graph of f −1 . The horizontal asymptotes y = 0 on the graphs of the exponential functions become vertical asymptotes x = 0 on the log graphs. 6.1 Introduction to Exponential and Logarithmic Functions y = bx , b > 1 y = logb (x), b > 1 335 y = bx , 0 < b < 1 y = logb (x), 0 < b < 1 On a procedural level, logs undo the exponentials. Consider the function f (x) = 2x . When we evaluate f (3) = 23 = 8, the input 3 becomes the exponent on the base 2 to produce the real number 8. The function f −1 (x) = log2 (x) then takes the number 8 as its input and returns the exponent 3 as its output. In symbols, log2 (8) = 3. More generally, log2 (x) is the exponent you put on 2 to get x. Thus, log2 (16) = 4, because 24 = 16. The following theorem summarizes the basic properties of logarithmic functions, all of which come from the fact that they are inverses of exponential functions. Theorem 6.2. Properties of Logarithmic Functions: Suppose f (x) = logb...
View Full Document

Ask a homework question - tutors are online