di-0451-e

Dt 1 kut kdt 1 t et 1 kut rf t ecft dt 1 ku rf

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: = βu + Ku − D ( βu − βd) E DKdT E+D Ku WACCBT Myers (1974) Miles-Ezzell (1980) Ke = Ku + Vu - E (Ku − Kd) E Ke = Ku + D ⎡ TKd ⎤ ( Ku − Kd ) ⎢1 ⎥ E ⎣ 1 + Kd ⎦ β L = βu + Vu - E ( βu − βd) E β L = βu + D ⎡ TKd ⎤ ( βu − βd) ⎢1 ⎥ E ⎣ 1 + Kd ⎦ Ku − VTS(Ku - Kd) + DKdT E+D Ku − Ku − VTS(Ku - Kd) E+D Ku − VTS ECFt\\Ku PV[Ku; T D Kd] ECFt - Dt-1 (Kut - Kdt) PV[Kd; T D Kd] ECFt - (Vu-E) (Kut - Kd t) FCFt\\Ku ECFt\\RF FCFt +T D t-1 Kdt ECFt - Dt-1 (Kut - Kdt) - Et-1 (Kut - RF t) FCFt +T D Kd +VTS (Ku -Kd) ECFt - (Vu-E) (Kut - Kd t) – – Et-1 (Kut - RF t) FCFt\\RF FCFt +T D t-1 Kdt - (Et-1 + Dt-1)(Kut - RF t) FCFt +T D Kd +VTS (Ku -Kd) – (Et-1 + Dt-1)(Kut - RF t) DKdT 1 + Ku E + D 1 + Kd 0 DKdT (Ku - Kd) E + D (1 + Kd 0 ) PV[Ku; T D Kd] (1+Ku)/(1+Kd) ECF − D(Ku − Kd ) 1 + Kd(1 - T) (1 + Kd 0 ) FCF +T D Kd (1+Ku) / (1 + Kd) 1 + Kd(1 - T) – (1 + Kd 0 ) – Et-1 (Kut - RF t) FCF +T D Kd (1+Ku) / (1 + Kd) – – (Et-1 + Dt-1)(Kut - RF t) ECF − D(Ku − Kd ) IESE Business School-University of Navarra - 21 Appendix 2 (continued) Miller Ke ßL D Ke = Ku + [Ku − Kd(1 − T)] E β L = βu + D TKd D ( βu − βd) + E E PM Ku WACC WACCBT VTS ECFt\\Ku FCFt\\Ku ECFt\\RF FCFt\\RF DKdT E+D 0 ECFt - Dt-1 [Kut - Kdt(1-T)] FCFt ECFt - Dt-1 [Kut - Kdt(1-T)] – – Et-1 (Kut - RF t) FCFt – (Et-1 + Dt-1)(Kut - RF t) Ku + Modigliani-Miller Ke ßL WACC WACCBT VTS ECFt\\Ku FCFt\\Ku ECFt\\RF FCFt\\RF D VT S K e = Ku + [Ku − Kd(1 - T) - (Ku - g)* E D βL = βu + D T K d VT S ( K u - g ) [ βu − βd +* E PM D PM D Ku - (Ku - g) VTS * (E + D) DKu - (Ku - g)VTS + DTKd * E+D With-cost-of-leverage Ke = Ku + D [Ku(1 − T) + KdT − R F ] E β L = βu + D ( βu(1 - T) − Tβd) E D(KuT − Kd + R F ) E+D D[(Ku − Kd )T + R F − Kd)] Ku − E+D PV[Ku; D (KuT+ RF- Kd)] ECFt - Dt-1 [Kut (1-T)+KdtT -RF t] FCFt + Dt-1 [Kut T - Kdt + RF t] ECFt - Dt-1 [Kut(1-T)+ KdtT -RF t] – Et-1 (Kut - RF t) FCFt + Dt-1 [Kut T - Kdt + RF t] – – (Et-1 + Dt-1)(Kut - RF t) Ku − Practitioners’ Ke = Ku + D (Ku − R F ) E β L = βu + Ku - D D βu E R F − Kd(1 − T ) E+D Ku + D Kd − R F E+D PV[RF; T D RF] PV[Ku; T D Kd - D(Kd- RF)] ECFt -Dt-1[Kut - Kdt(1-T) -(Ku-g)VTS/D]* FCFt + Et-1 Ku + (Ku-g)VTS * ECFt - Dt-1 (Kut - RF t) FCFt + Dt-1 [RF t -Kdt (1-T)] ECFt -Dt-1[Kut - Kdt(1-T) -(Ku-g)VTS/D] – – Et-1 (Kut - RF t)* FCFt + Et-1 Ku + (Ku-g)VTS – – (Et-1 + Dt-1)(Kut - RF t)* ECFt - (Et-1 + Dt-1) (Kut – RF t) * Valid on...
View Full Document

This note was uploaded on 05/10/2013 for the course MBA MBA taught by Professor Mba during the Fall '11 term at ESLSCA.

Ask a homework question - tutors are online