# lecture16(11.2,11.3) - Math 141 Lecture 16 Greg Maloney...

• Notes
• 18

This preview shows page 1 - 6 out of 18 pages.

Math 141Lecture 16Greg MaloneyUniversity of Massachusetts BostonOctober 28, 2010Math 141 (UMass Boston)Lecture 16October 28, 2010212 / 329
Outline1(11.2) Calculus with Parametric CurvesTangentsAreasArc Length2(11.3) Polar CoordinatesMath 141 (UMass Boston)Lecture 16October 28, 2010213 / 329
(11.2) Calculus with Parametric CurvesTangentsExample (Example 2, p. 667)Consider the cycloidx=r(θ-sinθ),y=r(1-cosθ).2Πr4Πr6Πrx2ry1At what points is the tangent horizontal?2At what points is the tangent vertical?Math 141 (UMass Boston)Lecture 16October 28, 2010214 / 329
(11.2) Calculus with Parametric CurvesTangentsExample (Example 2, p. 667)Consider the cycloidx=r(θ-sinθ),y=r(1-cosθ).2Πr4Πr6Πrx2ry1At what points is the tangent horizontal?
Math 141 (UMass Boston)Lecture 16October 28, 2010215 / 329
(11.2) Calculus with Parametric CurvesTangentsExample (Example 2, p. 667)Consider the cycloidx=r(θ-sinθ),y=r(1-cosθ).2Πr4Πr6Πrx2ry2At what points is the tangent vertical?Whenθ=2nπbothdy/dθanddx/dθare 0.To see if there is a vertical tangent, use L’Hospital’s Rule.limθ2nπ+dydx=limθ2nπ+sinθ1-cosθ=limθ2nπ+cosθsinθ10+Therefore limθ2nπ+(dy/dx) =.A similar argument shows limθ2nπ-(dy/dx) =-∞.Therefore there is a vertical tangent whenθ=2nπ.Math 141 (UMass Boston)Lecture 16October 28, 2010216 / 329

Course Hero member to access this document

Course Hero member to access this document

End of preview. Want to read all 18 pages?

Course Hero member to access this document

Term
Fall
Professor
Maloney
Tags
Polar coordinate system, Conic section
• • • 