Lecture 5 (Sept 7)

Lecture 5 (Sept 7) - Biological Sciences 110A Introduction...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Lecture 5: Enzymatic function and catalyzed reactions  The laws of thermodynamics  Free energy change (∆G) in chemical reactions  ATP: The energy currency of cells  Coupled reactions driven by ATP hydrolysis  Reduction-oxidation (redox) reactions  Enzyme catalysts reduce activation energy  Enzyme kinetics (Michaelis-Menten equation) Biological Sciences 110A: Introduction to Biology Kendal Broadie Reading in Chapter 3 (85-104) Karp
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
All chemical systems (and cells) are bound by the  laws of thermodynamics 1. Energy is conserved  . Energy can be converted from  one form to another, but cannot be created or  destroyed. 2. The entropy (disorder) of the universe (or any closed  system) always increases.  Reactions go “downhill”  from a higher to a lower energy state. Living cells are highly ordered, and seem to defy the  second law…  How? Cells are not closed systems . Cells create and maintain order by using energy (light or  chemical energy) obtained from their environment,  some  of which is returned to their environment as heat.  
Background image of page 2
( G)  of a chemical reaction G = H – T S H  = enthalpy (~energy) change,  T  = temperature,  S  = entropy (~disorder) change H  and  S  for a reaction can be either negative or positive.  Examples: C 6 H 12 O 6 (glucose) + 6 O 2 > 6 H 2 O + 6 CO 2 H  is negative and  S  is positive.  G o   = -686 kcal/mole. 2 H 2 + O 2 > 2 H 2 O Negative  S  is overcome by very negative  H.   G o is VERY negative. G = G products – G reactants G is  dependent upon reaction conditions and the concentrations of reactants and products. G o  (“standard  free energy change”) refers to the free energy change under standard conditions (25 o C, 1 atm, 1 M [reactants,  products]), and is used for comparing the thermodynamic favorability of reactions. G =
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 04/07/2008 for the course BSCI 110B taught by Professor Due during the Spring '08 term at Vanderbilt.

Page1 / 22

Lecture 5 (Sept 7) - Biological Sciences 110A Introduction...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online