Final Q212/5/2020#Capture a Regression Model with Only Significant Variables.Set thedependent variable to 'Species'. Even though the variable iscategorical and regression is not the proper model to use we willignore this fact for the purpose of the assignment.data =read.csv("iris_exams.csv")str(data)## 'data.frame':300 obs. of6 variables:##$ id: chr"S001" "S002" "S003" "S004" ...##$ Species: chr"setosa" "setosa" "setosa" "setosa" ...##$ Sepal.Length: num4.75 5.07 5.24 5.48 4.9 ...##$ Sepal.Width : num3.3 3.68 3.44 3.96 2.81 ...##$ Petal.Length: num1.44 1.21 1.59 1.53 1.49 ...##$ Petal.Width : num0.235 0.111 0.405 0.272 0.345 ...## 'data.frame':300 obs. of6 variables:##$ id: chr"S001" "S002" "S003" "S004" ...##$ Species: chr"setosa" "setosa" "setosa" "setosa" ...##$ Sepal.Length: num4.75 5.07 5.24 5.48 4.9 ...##$ Sepal.Width : num3.3 3.68 3.44 3.96 2.81 ...##$ Petal.Length: num1.44 1.21 1.59 1.53 1.49 ...##$ Petal.Width : num0.235 0.111 0.405 0.272 0.345 ...data$Species =as.numeric(as.factor(data$Species))model =lm(Species~Petal.Width,data =data)summary(model)#### Call:## lm(formula = Species ~ Petal.Width, data = data)#### Residuals:##Min1QMedian3QMax## -0.68016 -0.12698 -0.004810.121210.77207#### Coefficients:##Estimate Std. Error t value Pr(>|t|)## (Intercept)0.783460.0236233.17<2e-16 ***## Petal.Width1.015220.0165561.33<2e-16 ***## ---## Signif. codes:0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1##