Econometrics-I-12

# Econometrics-I-12 - Econometrics I Professor William Greene...

This preview shows pages 1–8. Sign up to view the full content.

Part 12: Asymptotics for the Regression Model Econometrics I Professor William Greene Stern School of Business Department of Economics

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Part 12: Asymptotics for the Regression Model Econometrics I Part 12 – Asymptotics for  the Regression Model ™  1/38
Part 12: Asymptotics for the Regression Model Setting The least squares estimator is ( XX )-1 Xy = ( XX )-1i x iyi = + ( XX )-1i x iεi So, it is a constant vector plus a sum of random variables. Our ‘finite sample’ results established the behavior of the sum according to the rules of statistics. The question for the present is how does this sum of random variables behave in large samples? ™  2/38

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Part 12: Asymptotics for the Regression Model Well Behaved Regressors A crucial assumption: Convergence of the moment matrix XX /n to a positive definite matrix of finite elements, Q What kind of data will satisfy this assumption? What won’t? Does stochastic vs. nonstochastic matter? Various conditions for “well behaved X ™  3/38
Part 12: Asymptotics for the Regression Model Probability Limit ™  4/38 - = - = = + × ε ÷ ÷ × ε × ε ÷ ÷ 1 n i i i 1 1 n i i i i i 1 i We use convergence in mean square.  Adequate for almost all problems,  not adequate for some time series problems. 1 1 n n 1 1 1 ( ' ' n n n b X'X x b - b - X'X x x β β29( β29 = - = - - =  ÷ ÷   ε ε ÷ ÷ ÷  ∑ ∑ 1 n 1 1 1 n i i j j 2 i 1 1 n 1 1 1                    ' n n n In E[( ' | ] in the double sum, terms with unequal subscripts have expectation zero. E[( ' | n j=1 X'X X'X x x X'X b - b - X b - b - = β29( β29 β29( β29 - - = - - -  ε ÷ ÷ ÷  σ σ  = = ÷ ÷ ÷ ÷  1 1 n 2 i j i 2 i 1 1 1 1 2 2 1 1 1 'E[ | ] n n n 1 1 1 1               n n n n n n X X'X x x X X'X X'X X'X X'X X'X =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Part 12: Asymptotics for the Regression Model Mean Square Convergence E[ b | X ]= β for any X. Var[ b | X ]0 for any specific well behaved X b converges in mean square to β ™  5/38
Part 12: Asymptotics for the Regression Model Crucial Assumption of the Model ™  6/38 = ÷ ε ε i i 1 What must be assumed to get plim ? n (1)   = a random vector with finite means and variance and identical distributions. (2)   =  a random variable with a constant distribution with finite mean X' 0 x = ε ε ε i i i i i i n i i 1  and variance and E[ ]= 0 (3)   and   statistically independent.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern