IntelSoftwareDevelopersManual

If the operating system attempts to access data

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: privilege checks using the calling procedure’s privilege level (stored in the RPL) rather than the numerically lower privilege level (the CPL) of the operatingsystem procedure. The RPL thus insures that the operating system does not access a segment on behalf of an application program unless that program itself has access to the segment. Figure 4-12 shows an example of how the processor uses the RPL field. In this example, an application program (located in code segment A) possesses a segment selector (segment selector D1) that points to a privileged data structure (that is, a data structure located in a data segment D at privilege level 0). The application program cannot access data segment D, because it does 4-28 PROTECTION not have sufficient privilege, but the operating system (located in code segment C) can. So, in an attempt to access data segment D, the application program executes a call to the operating system and passes segment selector D1 to the operating system as a parameter on the stack. Before passing the segment selector, the (well behaved) application program sets the RPL of the segment selector to its current privilege level (which in this example is 3). If the operating system attempts to access data segment D using segment selector D1, the processor compares the CPL (which is now 0 following the call), the RPL of segment selector D1, and the DPL of data segment D (which is 0). Since the RPL is greater than the DPL, access to data segment D is denied. The processor’s protection mechanism thus protects data segment D from access by the operating system, because application program’s privilege level (represented by the RPL of segment selector B) is greater than the DPL of data segment D. Passed as a parameter on the stack. Application Program Code Segment A CPL=3 Gate Selector B RPL=3 Call Gate B DPL=3 Segment Sel. D1 RPL=3 3 Lowest Privilege 2 Access not allowed 1 Code Operating Segment C System DPL=0 Segment Sel. D2 RPL=0 Access allowed Data Segment D DPL=0 0 Highest Privilege Figure 4-12. Use of RPL to Weaken Privilege Level of Called Procedure Now assume that instead of setting the RPL of the segment selector to 3, the application program sets the RPL to 0 (segment selector D2). The operating system can now access data segment D, because its CPL and the RPL of segment selector D2 are both equal to the DPL of data segment D. Because the application program is able to change the RPL of a segment selector to any value, it can potentially use a procedure operating at a numerically lower privilege level to access a 4-29 PROTECTION protected data structure. This ability to lower the RPL of a segment selector breaches the processor’s protection mechanism. Because a called procedure cannot rely on the calling procedure to set the RPL correctly, operating-system procedures (executing at numerically lower privilege-levels) that receive segment selectors from numerically higher privilege-level procedures need to test the RPL of the segment selector to determine if it is at the appropriate level. The ARPL (adjust requested privilege level) instruction is provided for this purpose. This instruction adjusts the RPL of one segment selector to match that of another segment selector. The example in Figure 4-12 demonstrates how the ARPL instruction is intended to be used. When the operating-system receives segment selector D2 from the application program, it uses the ARPL instruction to compare the RPL of the segment selector with the privilege level of the application program (represented by the code-segment selector pushed onto the stack). If the RPL is less than application program’s privilege level, the ARPL instruction changes the RPL of the segment selector to match the privilege level of the application program (segment selector D1). Using this instruction thus prevents a procedure running at a numerically higher privilege level from accessing numerically lower privilege-level (more privileged) segments by lowering the RPL of a segment selector. Note that the privilege level of the application program can be determined by reading the RPL field of the segment selector for the application-program’s code segment. This segment selector is stored on the stack as part of the call to the operating system. The operating system can copy the segment selector from the stack into a register for use as an operand for the ARPL instruction. 4.10.5. Checking Alignment When the CPL is 3, alignment of memory references can be checked by setting the AM flag in the CR0 register and the AC flag in the EFLAGS register. Unaligned memory references generate alignment exceptions (#AC). The processor does not generate alignment exceptions when operating at privilege level 0, 1, or 2. Refer to Table 5-7 in Chapter 5, Interrupt and Exception Handling for a description of the alignment requirements when alignment checking is enabled. 4.11. PAGE-LEVEL PROTECTION Page-level protection can be used alone or applied to s...
View Full Document

This note was uploaded on 06/07/2013 for the course ECE 1234 taught by Professor Kwhon during the Spring '10 term at University of California, Berkeley.

Ask a homework question - tutors are online