Chap3StudentSolutions

# 15 is then the convolution z t 015 u t h t or z

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: pension model Using the basic principle, F = ma , we can write Solutions 3-39 M. J. Roberts - 8/16/04 K s[ y( t) − x( t) − d0 ] + K d or (a) d [y(t) − x(t)] + mg = − m y′′(t) dt m y′′ ( t) + K d y′ ( t) + K s y( t) = K d x′ ( t) + K s x( t) + K sd0 − mg . At rest all the derivatives are zero and K s ( y( t) − x( t) − d0 ) + mg = 0 . Solving, y( t) − x( t) = (b) K sd0 − mg 75000 × 0.6 − 1500 × 9.8 = = 0.404 m Ks 75000 The describing equation is m y′′ ( t) + K d y′ ( t) + K s y( t) = K d x′ ( t) + K s x( t) + K sd0 − mg . which can be rewritten as or m y′′ ( t) + K d [ y′ ( t) − x′ ( t)] + K s[ y( t) − x( t)] − K sd0 + mg = 0 mg =0 m y′′ ( t) + K d [ y′ ( t) − x′ ( t)] + K s y( t) − x( t) − d0 + Ks Let z( t) = y( t) − x( t) − d0 + or mg . Then y′′ ( t) = z′′ ( t) + x′′ ( t) and Ks m[z′′ ( t) + x′′ ( t)] + K d z′ ( t) + K s z( t) = 0 m z′′ ( t) + K d z′ ( t) + K s z( t) = − m x′′ ( t) This equation is in a form which describes an LTI system. We can find its impulse response. After time, t = 0, the impulse response is the homogenous solution. The eigenvalues are 2 −K d ± K d − 4 mK s K λ1,2 = =− d ± 2m 2m 2 Kd Ks = −6.667 ± j 2.357 . 2− m 4m The homogeneous solution is h( t) = K h1eλ 1 t + K h 2eλ 2 t = K h1e( −6.667 + j 2.357) t + K h 2e( −6.667 − j 2.357) t . Since the system is underdamped another (equivalent) form of homogeneous solution will be more convenient, h( t) = e −6.667 t [K h1 cos(2.357 t) + K h 2 sin(2.357 t)] . Solutions 3-40 M. J. Roberts - 8/16/04 The impulse response can have a discontinuity at t = 0 and an impulse but no higher-order singularity there. Therefore the general form of the impulse response is h( t) = Kδ ( t) + e −6.667 t [K h1 cos(2.357 t) + K h 2 sin(2.357 t)] u( t) Integrating both sides of the describing equation between 0 − and 0 + , ( m h′ (0 ) − h′ (0 + 0+ − )) + K (h(0 ) − h(0 )) + K ∫ h(t)dt = 0 . + − d s 0− (The integral of the doublet, which is the derivative of the impulse excitation, is zero.) Since the impulse response and all its derivatives are zero before time, t = 0, it follows then that 0+ m h′ (0 ) + K d h(0 ) + K s ∫ h( t) dt = 0 + + 0− and m(−6.667K h1 + 2.357K h 2 ) + K d K h1 + K sK = 0 . Integrating the describing equation a second time between 0 − and 0 + , 0+ m h(0 ) + K d ∫ h( t) dt = 0 + 0− or mK h1 + K d K = 0 . Integrating the describing equation a third time, 0+ m ∫ h( t) dt = − m 0− or mK = − m ⇒ K = −1 . Solving for the other two constants, K h1 = Kd and m K K m −6.667 d + 2.357K h 2 + K d d − K s = 0 m m or 2 Ks Kd K − 2 + 6.667 d m Kh 2 = m m 2.357 Kd m Therefore h( t) = −δ ( t) + e −6.667 t [13.333 cos(2.357 t) − 16.497 sin(2.357 t)] u( t) Solutions 3-41 M. J. Roberts - 8/16/04 (c) The response to a step of size 0.15 is then the convolution, z( t) = 0.15 u( t) ∗ h( t) or ∞ { } z( t) = 0.15 ∫ −δ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online