computer_organization_solutions

computer_organization_solutions - Solution* for Chapter 1...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Solution* for Chapter 1 Exercise* Solutions for Chapter 1 Exercises 1.1 5, CPU 1.2 1, abstraction 1.3 3, bit 1.4 8, computer family 1.5 19, memory 1.6 10, datapath 1.7 9, control 1.8 11, desktop (personal computer) 1.9 15, embedded system 1.10 22, server 1.11 18, LAN 1.12 27, WAN 1.13 23, supercomputer 1.14 14, DRAM 1.15 13, defect 1.16 6, chip 1.17 24, transistor 1.18 12, DVD 1.19 28, yield 1.20 2, assembler 1.21 20, operating system 1.22 7, compiler 1.23 25, VLSI 1.24 16, instruction 1.25 4, cache • 1.26 17, instruction set architecture
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Solutions for Chapter 1 Exercises 1.27 21, semiconductor 1.28 26, wafer 1.29 i 1.30 b 1.31 e 1.32 i 1.33 h 1.34 d 1.35 f 1.36 b 1.37 c 1.38 f 1.39 d 1.40 a 1.41 c 1.42 i 1.43 e 1.44 g 1.45 a 1.46 Magnetic disk: Time for 1/2 revolution =1/2 rev x 1/7200 minutes/rev X 60 seconds/ minutes 3 4.17 ms Time for 1/2 revolution = 1/2 rev x 1/10,000 minutes/rev X 60 seconds/ minutes = 3 ms Bytes on center circle = 1.35 MB/seconds X 1/1600 minutes/rev x 60 seconds/minutes = 50.6 KB Bytes on outside circle = 1.35 MB/seconds X 1/570 minutes/rev X 60 seconds/minutes = 142.1 KB 1.48 Total requests bandwidth = 30 requests/sec X 512 Kbit/request = 15,360 Kbit/sec < 100 Mbit/sec. Therefore, a 100 Mbit Ethernet link will be sufficient.
Background image of page 2
Solution* for Chapter X Exarclsm 1.49 Possible solutions: Ethernet, IEEE 802.3, twisted pair cable, 10/100 Mbit Wireless Ethernet, IEEE 802.1 lb, no medium, 11 Mbit Dialup, phone lines, 56 Kbps ADSL, phone lines, 1.5 Mbps Cable modem, cable, 2 Mbps 1.50 a. Propagation delay = mis sec Transmission time = LIR End-to-end delay =m/s+L/R b. End-to-end delay =mls+ LJR+t c. End-to-end delay = mis + 2I/R + f/2 1.51 Cost per die = Cost per wafer/(Dies per wafer x Yield) = 6000/( 1500 x 50%) = 8 Cost per chip = (Cost per die + Cost_packaging + Cost_testing)/Test yield = (8 + 10)/90% = 20 Price = Cost per chip x (1 + 40%) - 28 If we need to sell n chips, then 500,000 + 20« = 28», n = 62,500. 1.52 CISCtime = Px8r=8Prn s RISC time = 2Px 2T= 4 PTns RISC time = CISC time/2, so the RISC architecture has better performance. 1.53 Using a Hub: Bandwidth that the other four computers consume = 2 Mbps x 4 = 8 Mbps Bandwidth left for you = 10 - 8 = 2 Mbps Time needed = (10 MB x 8 bits/byte) / 2 Mbps = 40 seconds Using a Switch: Bandwidth that the other four computers consume = 2 Mbps x 4 = 8 Mbps Bandwidth left for you = 10 Mbps. The communication between the other computers will not disturb you! Time needed = (10 MB x 8 bits/byte)/10 Mbps = 8 seconds
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Solutions for Chapter 1 EXWCIMS 1.54 To calculate d = axfc-axc, the CPU will perform 2 multiplications and 1 subtraction. Time needed =10x2+1x1=2 1 nanoseconds. We can simply rewrite the equation &sd = axb-axc= ax (b-c). Then 1 multi- plication and 1 subtraction will be performed. Time needed =10x1 + 1x1 = 11 nanoseconds. 1.55 No solution provided. 1.56 No solution provided. 1.57 No solution provided. 1.68 Performance characteristics: Network address Bandwidth (how fast can data be transferred?) Latency (time between a request/response pair) Max transmission unit (the maximum number of data that can be transmit- ted in one shot) Functions the interface provides: Send data Receive data Status report (whether the cable is connected, etc?) 1.69 We can write Dies per wafer = /((Die area)" 1 ) and Yield = /((Die area)" 2 ) and thus Cost per die = /((Die area) 3 ).
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 123

computer_organization_solutions - Solution* for Chapter 1...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online