Calc 172 lab2 - In Lab 2, our mission is to explore the...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: In Lab 2, our mission is to explore the values of the integral Gamma(P) = x x px1 xE xx xxx . We did this by inputting it into the program Joy of Mathematica and evaluating for the integers 1-10. Our results saw that as p increased, so did Gamma(P). Looking even closely at the data, we noticed that Gamma(P) was equal to Gamma(P-1) * (P-1). Simplifying the equation gave us Gamma(P+1)=Gamma(P)*P. Next it was time to try this out for non-integers. Using numbers such as , 3/2, etc., we calculated the equation and saw similar results. Once again Gamma(P+1)=Gamma(P)*P. Even when using exotic values such as 2.3457, the formula held true as long as the intervals were being increased by one each time. Now, the function, first evaluated by the Swiss mathematician Leonhard Euler in the 16 th century, must serve some purpose. If one was to look closely at the data, this is easy to see. Below are the charts of Gamma(P) and P!...
View Full Document

This note was uploaded on 04/07/2008 for the course MATH 172 taught by Professor Pietraho during the Spring '08 term at Bowdoin College.

Page1 / 2

Calc 172 lab2 - In Lab 2, our mission is to explore the...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online