Lecture33

Par4alsdontexistat thecri4calpoint00 note

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview:             when (x,y)  f ( x, y ) ≤ f ( a, b) is near (a,b).   The number f(a,b) is called  a local maximum value.  € Maximum and Minimum Values  Deﬁni'on:  A func4on of two  variables has an absolute  maximum at (a,b) if                            for all (x,y)  f ( x, y ) ≤ f ( a, b) in the domain of f.   The number f(a,b) is called  a absolute maximum  value.  € Maximum and Minimum Values  Deﬁni'on:  A func4on of two  variables has a local  minimum at (a,b) if                            when (x,y)  f ( x, y ) ≥ f ( a, b) is near (a,b).   The number f(a,b) is called  a local minimum value.  € Maximum and Minimum Values  Deﬁni'on:  A func4on of two  variables has an absolute  minimum at (a,b) if   ...
View Full Document

This note was uploaded on 08/13/2013 for the course MATH 1LT3 taught by Professor Erinclements during the Fall '13 term at McMaster University.

Ask a homework question - tutors are online