bv_cvxbook_extra_exercises

n where i 0 which is given is the input referred

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: : Wmin ≤ wi ≤ Wmax . For our specific problem, we’ll take Wmin = 0.1 and Wmax = 10. Each of the wire segments will be modeled by a simple simple RC circuit, with the resistance inversely proportional to the width of the wire and the capacitance proportional to the width. (A far better model uses an extra constant term in the capacitance, but this complicates the equations.) The capacitance and resistance of the ith segment is thus Ci = k 0 w i , Ri = ρ/wi , where k0 and ρ are positive constants, which we take to be one for simplicity. We also have Cload1 = 1.5, Cload2 = 1, and Cload3 = 5. Using the RC model for the wire segments yields the circuit shown below. 86 R2 R3 C3 + Cload1 C2 R1 R5 R4 C5 + Cload2 R6 C1 C4 C6 + Cload3 We will use the Elmore delay to model the delay from the source to each of the loads. The Elmore delay to loads 1, 2, and 3 are given by T1 = (C3 + Cload1 )(R1 + R2 + R3 ) + C2 (R1 + R2 ) + +(C1 + C4 + C5 + C6 + Cload2 + Cload3 )R1 T2 = (C5 + Cload2 )(R1 + R4 + R5 ) + C4 (R1 + R4 ) + +(C6 + Cload3 )(R1...
View Full Document

This note was uploaded on 09/10/2013 for the course C 231 taught by Professor F.borrelli during the Fall '13 term at Berkeley.

Ask a homework question - tutors are online