bv_cvxbook_extra_exercises

5 1 4 2 6 3 in this example tasks 1 2 and 5 start at

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: er in the problem; ‘N − 1’ just means ‘all-but-one’.) This states that the system can still operate even if any one power line goes out, by re-routing the line powers. The case when line j goes out is called ‘failure contingency j ’; this corresponds to replacing Pjmax with 0. The requirement is that there must exist a contingency power flow vector p(j ) that (j ) satisfies all the constraints above, with pj = 0, using the same given generator powers. (This corresponds to the idea that power flows can be re-routed quickly, but generator power can only be changed more slowly.) The ‘N − 1 reliability constraint’ requires that for each line, there is a contingency power flow vector. The ‘N − 1 reliability constraint’ is (implicitly) a constraint on the generator powers. The questions below concern the specific instance of this problem with data given in rel_pwr_flow_data.m. (Executing this file will also generate a figure showing the network you are optimizating.) Especially for part (b) below, you must explain exactly how you set up the problem as a...
View Full Document

This note was uploaded on 09/10/2013 for the course C 231 taught by Professor F.borrelli during the Fall '13 term at University of California, Berkeley.

Ask a homework question - tutors are online