0 ien ap u sinh ra dong ro i ien tr cach

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ch ñieän : Rcñ = U/I Ñieän daãn roø : G = 1/Rcñ Ví duï : Rcñ ? q TÑt : E = 2πε rL ir E= I 2πγ rL r R2 i U = ∫ Edr = R1 Rcd = U = I 1 2πγ L I 2πγ L 2 ln R1 R ln R12 R 10 5 OÂn taäp GHK ª Phaàn lyù thuyeát © TS. Lương H u Tu n ª Phaàn baøi taäp : boû °phaân boá q vaø ϕ cuûa heä thoáng vaät daãn °phöông phaùp phaân ly bieán soá ª Khaùc ... 11 © TS. Lương H u Tu n Phaàn lyù thuyeát (baét buoäc) ª C1 : °ñònh luaät cô baûn °doøng ñieän dòch °heä phöông trình Maxwell °ñònh lyù Poynting - naêng löôïng ñieän töø °moâ hình toaùn ª C2 : °tính chaát theá °phöông trình Poisson - Laplace & 3 ÑKB °tính chaát cuûa vaät daãn trong TÑt °Naêng löôïng ñieän töø : − theo theá − cuûa heä thoáng vaät daãn °löïc : theo bieåu thöùc naêng löôïng 12 6 Khaùc ... © TS. Lương H u Tu n ª C1 : °giaûi tích vectô °TÑT ? moâ hình ? °thoâng soá chính : + E , B; J , ρ ; D, H + 3 phöông trình lieân heä °ÑKB : chieáu, n ª C2 : ° ñieän dung ° ñieän tích lieân keát ° löïc Coulomb ª C3 : töông töï (ε ↔ γ, q ↔ Ι) 13 Coâng thöùc ... dl = h1du1i1 + ... D: T: C: © TS. Lương H u Tu n dS1 = ± h2 h3 du2 du3i1 , dV = h1h2 h3 du1du2 du3 gradϕ = divA = rotA = 1 ∂ϕ h1 ∂u1 i1 + ... ∂ ( h2 h3 A1 ) 1 h1h2 h3 ∂u1 [ 1 h1h2 h3 h1 1 1 1 h2 1 r r h3 1 1 rsinθ + ...] h1i1 ∂ ∂u1 ... h1 A1 ∆ϕ = div ( gradϕ ) 14 7 © TS. Lương H u Tu n Coâng thöùc ... A.B = A1 B1 + ... i1 i2 A × B = A1 A2 B1 B2 i3 A3 B3 ∫ divAdV = ∫ AdS ∫ rotAdS = ∫ Adl V S S C ∇( A × B ) = B (∇ × A) − A(∇ × B) rot ( gradϕ ) = 0 15 © TS. Lương H u Tu n Coâng thöùc ... rotH = J + ∂∂D , H1t − H 2 t = J s t ∂B , E1t − E2t = 0 rotE = − ∂t , D1n − D2 n = σ divD = ρ , B1n − B2 n = 0 divB = 0 divJ = − ∂ρ , J1n − J 2 n = − ∂∂σ ∂t t W= ∫ 1 2V D = ε E B = µ H J = γ E ( B.H + E.D )dV P = E × H , PS = PJ + dW , we , wm dt 16 8 Coâng thöùc ... gt dq E = − gradϕ , ϕ A = ∫ Edl , ϕ = ∫ 4πε R A © TS. Lương H u Tu n ∆ϕ = − ρ ε ; ϕ1 = ϕ 2 , −ε1 ∂∂ϕ1 + ε 2 n ∂ϕ 2 ∂n = σ , − ∂∂ϕ1 + ∂∂ϕτ2 = 0 τ E = 0, ρ = 0, ϕ = const , E = σ n ε C= q U ρl = −divP, σ l = − P n + P2 n , P = (ε − ε 0 ) E 1 We = n ∫ 1 2V ∞ ε E 2 dV = 1 ∫ ρϕ dV + 1 ∫ σϕ dS = 1 ∑ ϕ k qk 2 2 2 V S k =1 F = qE n ∑ ϕ dq k k = FdX + dWe , F = ± ∂∂We X k =1 17 Coâng thöùc ... © TS. Lương H u Tu n Gauss veà ñieän : D.S = q* S = 4πr2 D.St = q* St = 2πr.L D.Sñ = q* Sñ = Sñ1 + Sñ2 = 2S0 AÛnh ñieän + phaân caùch phaúng ε − γ : ñoái xöùng, -q + phaân caùch caàu ε − γ : b = a 2 D , Q ' = Qa D ε1 −ε 2ε 2 + phaân caùch phaúng ε1 − ε2 : q1 = ε1 +ε 2 q, q2 = ε1 +ε 2 q 2 divJ = 0 Tính chaát : theá, nguoàn, ρ ≠ 0, ϕ ≈ const Töông töï (ε ↔ γ, q ↔ Ι) R =1 G = U I 18 9 ©...
View Full Document

This note was uploaded on 09/19/2013 for the course EDUC 2001 taught by Professor Tanhung during the Winter '11 term at Campbell University .

Ask a homework question - tutors are online