{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

HMWK07 - A B 13.34 12.65 13.24 13.42 13.06 12.91 13.09...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
TOBACCO SUPPLIERS SUPPLIER #1 13.34 12.91 12.97 13.15 13.01 12.91 12.65 13.09 13.09 13.03 12.96 12.87 13.24 13.40 13.24 13.20 13.00 13.53 13.42 13.45 13.14 13.05 12.68 13.20 13.06 12.96 12.96 13.27 12.83 12.84 SUPPLIER #2 12.85 12.75 13.05 13.15 13.32 13.12 13.22 13.12 13.92 13.13 13.20 13.23 13.25 13.40 13.42 13.15 13.22 13.48 13.35 13.27 The two most critical factors in the production of cigarettes are the leaf quality of the  tobacco and the blend and additive process. Of primary importance during the process  is the amount of moisture in the leaf. Too much results in non-absorption of additives;  too little moisture will cause over-absorption. The redresser is a process which takes the  blended tobacco, in chopped form, via a conveyor belt into a chamber where moisture is  measured  prior  to  additives  being  released.  If  the  moisture  levels  are  above  a  predetermined range, the machine will stop for the operator's manual intervention. At  this point the tobacco may be diverted, or more tobacco can be added to increase or  decrease  the  moisture  content.  Historically,  the  average  level  of  moisture  has  been  13.10 and a standard deviation of 0.20. Current machine tolerance ranges are 12.9 to  13.3.  Two  new  suppliers  are  being  considered,  and  each  supplied  a  group  of  randomly  selected batches of tobacco for testing. One  way  to  control  moisture  is  to  blend  two  batches  -  how  does  this  change  the  characteristics of the tobacco? A B C D E F G H I J K L M N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Enter Title Here # One Sample t-test Lower INSTRUCTIONS # Population Significance Both # # μ σ α Tails Upper # 5.0% 2 Both # sample standard # # # error Calc t +/-Test t # # # # # # μ = 0.000 2.500% # # # sample μ 0.000 2.500% Rescale Box & Whiskers # # # s n df skewness kurtosis Conclusion:  # # # minimum maximum # # # DATA # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # mean1 - One Sample Mean Test,  σ  un/known A6 : Enter known population mean ( μ ) B6: Enter population stdev (if known) C6:  Enter  α  (5% or 1%) E6:  Enter Lower/Both/Upper Either enter raw data  (A16:M65) or summary  (A13:C13) H 0 : Accept H 0 if p > Add title ( B2 ), data title ( A14 ) H 1 : Reject H 0 if p < Accept Ho Reject Ho Calc score 0 2 4 6 8 10 12 n s X t μ - = X μ - X X n X z σ μ - = A B C D E F G H I J K L M N O P Q R S T U V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
Background image of page 2
Enter Title Here # One Sample t-test Lower INSTRUCTIONS # Population Significance Both # # μ σ α Tails Upper # 5.0% 2 Both # sample standard # # # error Calc t +/-Test t # # # # # # μ = 0.000 2.500% # # # sample μ 0.000 2.500% Rescale Box & Whiskers # # # s n df skewness kurtosis Conclusion:  # # # minimum maximum # # # DATA # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # mean1 - One Sample Mean Test,  σ  un/known A6 : Enter known population mean ( μ ) B6: Enter population stdev (if known) C6:  Enter  α  (5% or 1%) E6:  Enter Lower/Both/Upper Either enter raw data  (A16:M65) or summary  (A13:C13) H 0 :
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}