LECTURE+24+COE-3001-A

These stresses on a sketch of a stress

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: that ma=er) X MC = 0 1 M Ay (L x) + [q · (L x)] · [ (L x)] = 0 Lx VM 2 ⇥ kN ⇤ M = 14kN · (0.8m) 28 · (0.8m) · 0.4m m C M = 2.24 kN · m Ay AlternaYvely, we may invoke: Z Z dM M M (x) = V (x)dx = ( 28x + 14)dx V ( x) = dx M (x) = 14x2 + 14x + C2 M (0) = 0 M ( x) = 14x2 + 14x x = 0.5m 14kN x = 0.8m C Ay x 8.4kN x = 0.5m x = 0.8m 3.5kN · m 2.24kN · m M (0.8) = 2.24kN · m 3/6/13 V M. Mello/Georgia Tech Aerospace x C Ay 20 Obtain moment of inerYa and 1st moment of area above point C 4.  DETERMINE THE MOMENT OF INERTIA OF THE RECTANGULAR CROSS SECTION bh3 I= 12 (25mm)(100mm3 I= = 2083 ⇥ 103 mm4 12 Ac yc 75mm 5.  Determine 1st moment Qc of the cross secYonal area Ac above C Q c = Ac y c Qc = (25mm · 25mm)(37.5mm) = 23440 mm3 3/6/13 M. Mello/Georgia Tech Aerospace 21 Calculate normal stress and shear stress at point C 6.  Determine normal stress at point C: x = x = x = My I (2.24kN · m)(25mm) 2083 ⇥ 103 mm4 26.9 M P a 7.  And ﬁnally the shear stress at point C: ⌧= VQ Ib Recall, V = 8.4 kN I = 2083 ⇥ 103 mm4 Q = 23440 mm3 b = 25 mm 3/6/13 ⌧= VQ Ib ⌧ = 3.78 M P a M. Mello/Georgia Tech Aerospace 22 AlternaYve form for soluYon of shear stress at point C 7.  And ﬁnally the shear stress at point C (conYnued): ✓ VQ V h2 Try alternaYve formulas, ⌧ = ⌧= Ib V = 8.4 kN I = 2083 ⇥ 103 mm4 h = 100mm y = 25mm ✓ ◆ V h2 ⌧= y2 2I 4 VQ ⌧= Ib 3/6/13 2I 4 y2 ✓ (8.4kN )(23440mm3 ) (100mm)2 ⌧= 2(2083 ⇥ 103 mm3 ) 4 ✓ 3V ⌧= 1 2A y2 c2 ◆ ◆ 25mm2 ◆ ⌧ = 3.78 M P a Could also apply this formula and obtain same result M. Mello/Georgia Tech Aerospace 23 Analysis of beam under four point bend loading X Fv = 0 Ay + By = 2P X MB = 0 Ay L P (L a) Ay L P [(L 2a) (L a)] = 0 PL = 0 ) By = P Ay = P P P a x V x M x<a Ay X x>L X V V = Ay 3/6/13 (V>0, guessed correct sign of shear stress resultant) M a C Ay C Fv = 0 V = P ( x < a) V Fv = 0 2 P + Ay = 0 (V>0, guessed correct sign of shear stress resultant) V =P (x > L M. Mello/Georgia Tech Aerospace a) 24 4 point bend shear force diagram V P 4 point bend shear force diagram P x a x a<x<L V a Ay X V P Fv = 0 P + Ay = 0 V = 0 (a < x < L 3/6/13 C M a) M. Mello/Georgia Tech Aerospace 25 4 point bend conﬁguraYon: Bending moment diagram For a < x < (L For x < a ! V = P V ( x) = P = M ( x) = P x dM dx V ( x) = 0 = a) ! V = 0 dM dx V ( x) = M ( x) = M ( x) = C1 (0 < x < a) Px + C M (L M ( x) = P a a < x < (L a) P (L P (x > L a) + C C = PL M ( x) = Px + PL (x > L M Pa x a L a L 4 point bend...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online