ECE 201 – Lecture 21

# Damping r2l and write solutions regime root

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: y Oscillates forever 0&lt;Γ&lt; Complex Oscillate &amp; decay Critically damped Γ= Pure real Decay Overdamped Γ&gt; Pure real Decay Undamped Underdamped 2/29/2012 Value Range Γ=0 ECE 201-4, Prof. Bermel Special Cases: RLC Circuits • In general, one can define a quality factor: = 2Γ Measures the lifetime of an excitation • Here, Γ=R/2L, and = 1/ , so 1/ = 2 ∙ /2 = 1 As R → 0, Q → ∞, and vice versa 2/29/2012 ECE 201-4, Prof. Bermel Mathematica Demonstration Click to begin 2/29/2012 ECE 201-4, Prof. Bermel Example 1 • Consider a circuit which charges a capacitor for t&lt;0 then switches to an RLC circuit at t=0. What is VC(t) for R=0, and 180? t=0 20 Ω 50 V + - 0.1 F 2/29/2012 + VC - R ECE 201-4, Prof. Bermel 0.1 H Solution t=0 20 Ω 50 V + VC - + - 0.1 F R 0.1 H • For t&lt;0: VC=50 V • For t&gt;0: I(0)=0, and: = Γ= 2/29/2012 = = .∙. = 10 rad/s = ∙ (0.1 ) 10 1 = = = Γ ∙( ) ECE 201-4, Prof. Bermel Solution t=0 20 Ω 50 V + - 0.1 F R + VC - 0.1 H • From before: = = /= + + = + Matching boundary conditions: + = −Γ + + −Γ − =0 2/29/2012 ECE 201-4, Prof. Bermel Solution t=0 20 Ω 50 V + VC - + - 0.1 F R 0.1 H • Substituting: + = + −Γ − = Γ+ −Γ + = −Γ + =0 Γ − − 2/29/2012 1− − + −Γ − = Γ− Γ = 1+ ECE 201-4, Prof. Bermel =0 Solution t=0 20 Ω + - 50 V 0.1 F • From before: = 2 = 2/29/2012 1− R + VC - 0.1 H Γ cos + 1+ + ECE 201-4, Prof. Bermel Γ sin Γ Homework • HW #19 solution posted • HW #20 due today by 4:30 pm in EE 326B • HW #21 due Wed.: DeCarlo &amp; Lin, Chapter 8: – Problem 30 – Problem 34 2/29/2012 ECE 201-4, Prof. Bermel...
View Full Document

Ask a homework question - tutors are online