RevModPhys.84.671

# n r where kr and kl are the extrinsic curvatures

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Án À @ n ¼ 0; 2 @  n  þ 1 Áh À Án ¼ 0: 2 (9.36) These should be thought of as constraints determining some of the boundary variables in terms of the others.17 We at this point imagine that we have solved these constraints, and that the action is really a function of the independent variables. The de Donder gauge is preserved by any 5d gauge transformation ÄA satisfying hð5Þ ÄA ¼ 0: (9.38) The component Ä5 must vanish at y ¼ 0 because the position of the brane is ﬁxed. Equation (9.38) then implies that Ä5 vanishes everywhere. The other components can have arbitrary values Ä ðx; 0Þ ¼  ðxÞ on the brane, which are then extended into bulk in order to satisfy Eq. (9.38), Ä ðx; yÞ ¼ eÀyÁ ðxÞ: (9.39) The residual gauge transformations acting on the boundary ﬁelds are then h ¼ @  þ @  ; n ¼ ÀÁ ; (9.40) n ¼ 0: The constraints (9.36) are invariant under these gauge transformations. The 4d effective action must and will be invariant under Eq. (9.40). The 5d part of the action reads M3 Z pﬃﬃﬃﬃﬃﬃﬃﬃ S5 ¼ 5 d4 xdyN Àg½RðgÞ þ K2 À K K : 2 (9.41) 17 Note that we cannot think of them as determining n , n in terms of h . Acting with @ on the ﬁrst equation, Á on the second, and then adding, we ﬁnd the equation @ @ h À hh ¼ 0; (9.37) which is precisely the statement that the 4d linearized curvature vanishes (which is, in turn, the linearized Hamiltonian constraint in general relativity). Thus, we must think of these constraints as determining some of the components of the metric. Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012 We want to expand this to quadratic order in h , n , and n and then plug in our solution. We need the expansion of K to ﬁrst order, K ¼ 1ð@y h À @ n À @ n Þ: 2 (9.42) Expanding, we have (after much integration by parts in 4d) Z 2 1 S ¼ d4 xdyn@ @ h À nhh þ @ h @ h 35 2 M5 1 1 À @ h@ h À @y h@ n þ ð@ n Þ2 2 2  n þ 1 n hn 1 h hh þ @y h @ 2 4  1 1 1 À @y h @y h À hhh þ ð@y hÞ2 : 4 4 4 Now, in the last line, integrate by parts in y, picking up a boundary term at y ¼ 0, and use Eq. (9.26) to kill the bulk part, Z 2 1 S5 ¼ d4 xdyn@ @ h À nhh þ @ h @ h 3 2 M5 1 1 À @ h@ h À @y h@ n þ ð@ n Þ2 2 2 Z 1 1 þ @y h @ n þ n hn þ d4 x À h@h 2 4 1 þ h @y h : 4 We now insert the following term into the action:  2 M3 Z 1 SGF ¼ À 5 d5 X @B HAB À @A H : (9.43) 2 4 The 5d equations of motion solve the de Donder gauge condition, so this term contributes 0 to the action (thought of as a function of the unconstrained variables) and we are free to add it. However, we write it in terms of the uncontrained 4d variables for now, Z 2 SGF ¼ d4 xdy 3 M5  2 1 1 À @ h À @ h þ @y n À @ n (9.44) 2 2 À  2 1 1 @ n À @y h þ @y n : 2 2 (9.45) Adding this to the previous 5d term, we ﬁnd that after using the 5d Laplace equations, the entire action...
View Full Document

Ask a homework question - tutors are online