X l 1 l1 1 s 1 s s0

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: . More precisely, we write the requirement of gauge invariance of the cubic action Sð1Þ ½’s ; ’s0 Š under linearized spin-s gauge transformations ð0Þ ’1 ÁÁÁs ¼ [email protected]1 2 ÁÁÁs Þ : s ð0Þ Sð1Þ þ ð1Þ Sð0Þ ¼ 0; s s where Sð0Þ denotes the free part of the action, ð0Þ denotes the s free spin-s gauge transformations, and ð1Þ denotes the gauge s transformations taken at linear order in the fields f’s0 ; ’s g and linear in the spin-s gauge parameter 1 ÁÁÁsÀ1 . The above equation implies that Â1 ÁÁÁs is a conserved current: @1 Â1 ÁÁÁs ð’s0 ; ’s0 Þ % 0; so that the Lorentz-invariance condition (A2) in the S-matrix approach is indeed equivalent to the conservation of the Noether current in the Lagrangian approach. Rev. Mod. Phys., Vol. 84, No. 3, July–September 2012 q1 A1 ÁÁÁs ðp1 ; . . . ; pN ; qÞ ¼ 0; 1005 8 q: (A2) 2. Cubic vertices In the particular case where the Feynman diagram (A1) is a single straight line, i.e., it describes the free propagation of a single particle, then the modified Feynman diagram essentially is the tree-level process In momentum space, Z Sð1Þ ¼ dD qdD p1 dD p2 ðp1 þ p2 þ qÞÀ1 ÁÁÁs j1 ÁÁÁs0 j1 ÁÁÁs0 Âðp1 ;p2 ; qÞ’1 ÁÁÁs ðqÞ’1 ÁÁÁs0 ðp1 Þ’1 ÁÁÁs0 ðp2 Þ: The cubic vertex with the lowest number of derivatives is of the form À1 ÁÁÁs j1 ÁÁÁs0 j1 ÁÁÁs0 ðp1 ; p2 ; qÞ / À1 ÁÁÁs ðp1 ; p2 ; qÞ1 1 Á Á Á s0 s0 ; where there is an implicit symmetrization over all  indices and À1 ÁÁÁs ðp1 ; p2 ; qÞ / ðp1 À p2 Þ1 Á Á Á ðp1 À p2 Þs is the cubic vertex for a scalar particle coupled to a spin-s massless particle. This coupling is called minimal in the sense that it contains the minimal amount of derivatives and also because it corresponds to a coupling with the Berends– Burgers–van Dam conserved currents associated with the rigid symmetries ’s0 ðkÞ ¼ i1 ÁÁÁsÀ1 k1 Á Á Á ksÀ1 ’s0 ðkÞ (Berends, Burgers, and van Dam, 1986) [see also Bekaert, Joung, and Mourad (2009) for more detail]. In the low-energy limit q ! 0, the only surviving cubic interaction is indeed the minimal coupling with s derivatives. The Lorentz-invariance condition (A2) on the amplitude Aðp1 ; . . . ; pN ; q; Þ for the further emission (or absorption) of a soft massless spin-s particle implies the conservation law of order s À 1 on the N external momenta (1) where each inserted minimal vertex À1 ÁÁÁs ðpi ; Àpi À q; qÞ came up with a coupling constant gðsÞ [for more detail, see, e.g., i Weinberg (1995), Sec. 13.1, or Blagojevic (2002), Appendix G]. Equivalently, these conservation laws can be obtained from the Noether charges associated with the abovementioned rigid symmetries. APPENDIX B: WEINBERG-WITTEN THEOREM: A LAGRANGIAN REFORMULATION 1. Weinberg-Witten theorem Weinberg and Witten (1980) designed their no-go theorem to eliminate ‘‘emergent gravity’’...
View Full Document

This document was uploaded on 09/28/2013.

Ask a homework question - tutors are online