And an offset which is copied into the eip register

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Condition (Flag States) Description 7-22 Vol. 1 PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS The destination operand specifies a relative address (a signed offset with respect to the address in the EIP register) that points to an instruction in the current code segment. The Jcc instructions do not support far transfers; however, far transfers can be accomplished with a combination of a Jcc and a JMP instruction (see "Jcc--Jump if Condition Is Met" in Chapter 3, "Instruction Set Reference, A-M," of the Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 2A). Table 7-4 shows the mnemonics for the Jcc instructions and the conditions being tested for each instruction. The condition code mnemonics are appended to the letter "J" to form the mnemonic for a Jcc instruction. The instructions are divided into two groups: unsigned and signed conditional jumps. These groups correspond to the results of operations performed on unsigned and signed integers respectively. Those instructions listed as pairs (for example, JA/JNBE) are alternate names for the same instruction. Assemblers provide alternate names to make it easier to read program listings. The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead of one or more status flags. See "Jump if zero instructions" on page 7-24 for more information about these instructions. Loop instructions -- The LOOP, LOOPE (loop while equal), LOOPZ (loop while zero), LOOPNE (loop while not equal), and LOOPNZ (loop while not zero) instructions are conditional jump instructions that use the value of the ECX register as a count for the number of times to execute a loop. All the loop instructions decrement the count in the ECX register each time they are executed and terminate a loop when zero is reached. The LOOPE, LOOPZ, LOOPNE, and LOOPNZ instructions also accept the ZF flag as a condition for terminating the loop before the count reaches zero. The LOOP instruction decrements the contents of the ECX register (or the CX register, if the address-size attribute is 16), then tests the register for the loop-termination condition. If the count in the ECX register is non-zero, program control is transferred to the instruction address specified by the destination operand. The destination operand is a relative address (that is, an offset relative to the contents of the EIP register), and it generally points to the first instruction in the block of code that is to be executed in the loop. When the count in the ECX register reaches zero, program control is transferred to the instruction immediately following the LOOP instruction, which terminates the loop. If the count in the ECX register is zero when the LOOP instruction is first executed, the register is pre-decremented to FFFFFFFFH, causing the loop to be executed 232 times. The LOOPE and LOOPZ instructions perform the same operation (they are mnemonics for the same instruction). These instructions op...
View Full Document

This note was uploaded on 10/01/2013 for the course CPE 103 taught by Professor Watlins during the Winter '11 term at Mississippi State.

Ask a homework question - tutors are online