Based on the setting of the status flags zf pf and cf

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: status word can be used to associate tags with registers relative to ST(0). The x87 FPU uses the tag values to detect stack overflow and underflow conditions (see Section, "Stack Overflow or Underflow Exception (#IS)"). Application programs and exception handlers can use this tag information to check the contents of an x87 FPU data register without performing complex decoding of the actual data in the register. To read the tag register, it must be stored in memory using either the FSTENV/FNSTENV or FSAVE/FNSAVE instructions. The location of the tag word in memory after being saved with one of these instructions is shown in Figures 8-9 through 8-12. Software cannot directly load or modify the tags in the tag register. The FLDENV and FRSTOR instructions load an image of the tag register into the x87 FPU; however, the x87 FPU uses those tag values only to determine if the data registers are empty (11B) or non-empty (00B, 01B, or 10B). If the tag register image indicates that a data register is empty, the tag in the tag register for that data register is marked empty (11B); if the tag register image indicates that the data register is non-empty, the x87 FPU reads the actual value in the data register and sets the tag for the register accordingly. This action prevents a program from setting the values in the tag register to incorrectly represent the actual contents of non-empty data registers. 8.1.8 x87 FPU Instruction and Data (Operand) Pointers The x87 FPU stores pointers to the instruction and data (operand) for the last noncontrol instruction executed. These pointers are stored in two 48-bit registers: the x87 FPU instruction pointer and x87 FPU operand (data) pointer registers (see Figure 8-1). (These pointers are saved to provide state information for exception handlers.) Vol. 1 8-13 PROGRAMMING WITH THE X87 FPU Note that the value in the x87 FPU data pointer register is always a pointer to a memory operand, If the last non-control instruction that was executed did not have a memory operand, the value in the data pointer register is undefined (reserved). The contents of the x87 FPU instruction and data pointer registers remain unchanged when any of the control instructions (FINIT/FNINIT, FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW, FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, FSAVE/FNSAVE, FRSTOR, and WAIT/FWAIT) are executed. The pointers stored in the x87 FPU instruction and data pointer registers consist of an offset (stored in bits 0 through 31) and a segment selector (stored in bits 32 through 47). These registers can be accessed by the FSTENV/FNSTENV, FLDENV, FINIT/FNINIT, FSAVE/FNSAVE, FRSTOR, FXSAVE, and FXRSTOR instructions. The FINIT/FNINIT and FSAVE/FNSAVE instructions clear these registers. For all the x87 FPUs and NPXs except the 8087, the x87 FPU instruction pointer points to any prefixes that preceded the instruction. For the 8087, the x87 FPU instruction pointer points only to the actual opcode. 8.1.9 Last Instruction Opcode The x87 F...
View Full Document

This note was uploaded on 10/01/2013 for the course CPE 103 taught by Professor Watlins during the Winter '11 term at Mississippi State.

Ask a homework question - tutors are online