ia-32_volume1_basic-arch

Other operates on 64 bit operands these instructions

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ory, 16-bit ports should be aligned to even addresses (0, 2, 4, ...) so that all 16 bits can be transferred in a single bus cycle. Likewise, 32-bit ports should be aligned to addresses that are multiples of four (0, 4, 8, ...). The processor supports data transfers to unaligned ports, but there is a performance penalty because one or more extra bus cycle must be used. The exact order of bus cycles used to access unaligned ports is undefined and is not guaranteed to remain the same in future IA-32 processors. If hardware or software requires that I/O ports be written to in a particular order, that order must be specified explicitly. For example, to load a word-length I/O port at address 2H and then another word port at 4H, two word-length writes must be used, rather than a single doubleword write at 2H. Note that the processor does not mask parity errors for bus cycles to the I/O address space. Accessing I/O ports through the I/O address space is thus a possible source of parity errors. 13.3.1 Memory-Mapped I/O I/O devices that respond like memory components can be accessed through the processor's physical-memory address space (see Figure 13-1). When using memorymapped I/O, any of the processor's instructions that reference memory can be used to access an I/O port located at a physical-memory address. For example, the MOV instruction can transfer data between any register and a memory-mapped I/O port. The AND, OR, and TEST instructions may be used to manipulate bits in the control and status registers of a memory-mapped peripheral devices. When using memory-mapped I/O, caching of the address space mapped for I/O operations must be prevented. With the Pentium 4, Intel Xeon, and P6 family processors, caching of I/O accesses can be prevented by using memory type range registers (MTRRs) to map the address space used for the memory-mapped I/O as 13-2 Vol. 1 INPUT/OUTPUT uncacheable (UC). See Chapter 10, "Memory Cache Control," in the Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 3A, for a complete discussion of the MTRRs. The Pentium and Intel486 processors do not support MTRRs. Instead, they provide the KEN# pin, which when held inactive (high) prevents caching of all addresses sent out on the system bus. To use this pin, external address decoding logic is required to block caching in specific address spaces. Physical Memory FFFF FFFFH EPROM I/O Port I/O Port I/O Port RAM 0 Figure 13-1. Memory-Mapped I/O All the IA-32 processors that have on-chip caches also provide the PCD (page-level cache disable) flag in page table and page directory entries. This flag allows caching to be disabled on a page-by-page basis. See "Page-Directory and Page-Table Entries" in Chapter 3 of in the Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 3A. 13.4 I/O INSTRUCTIONS The processor's I/O instructions provide access to I/O ports through the I/O address space. (These instructions cannot be used to access memory-m...
View Full Document

This note was uploaded on 10/01/2013 for the course CPE 103 taught by Professor Watlins during the Winter '11 term at Mississippi State.

Ask a homework question - tutors are online