Selector is a special pointer that identifies a

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ts of up to 4 GBytes Beginning at Address 0 Figure 3-6. Use of Segment Registers for Flat Memory Model 3-18 Vol. 1 BASIC EXECUTION ENVIRONMENT Segment Registers CS DS SS ES FS GS Code Segment Data Segment Stack Segment All segments are mapped to the same linear-address space Data Segment Data Segment Data Segment Figure 3-7. Use of Segment Registers in Segmented Memory Model Each of the segment registers is associated with one of three types of storage: code, data, or stack. For example, the CS register contains the segment selector for the code segment, where the instructions being executed are stored. The processor fetches instructions from the code segment, using a logical address that consists of the segment selector in the CS register and the contents of the EIP register. The EIP register contains the offset within the code segment of the next instruction to be executed. The CS register cannot be loaded explicitly by an application program. Instead, it is loaded implicitly by instructions or internal processor operations that change program control (such as, procedure calls, interrupt handling, or task switching). The DS, ES, FS, and GS registers point to four data segments. The availability of four data segments permits efficient and secure access to different types of data structures. For example, four separate data segments might be created: one for the data structures of the current module, another for the data exported from a higherlevel module, a third for a dynamically created data structure, and a fourth for data shared with another program. To access additional data segments, the application program must load segment selectors for these segments into the DS, ES, FS, and GS registers, as needed. The SS register contains the segment selector for the stack segment, where the procedure stack is stored for the program, task, or handler currently being executed. All stack operations use the SS register to find the stack segment. Unlike the CS register, the SS register can be loaded explicitly, which permits application programs to set up multiple stacks and switch among them. Vol. 1 3-19 BASIC EXECUTION ENVIRONMENT See Section 3.3, "Memory Organization," for an overview of how the segment registers are used in real-address mode. The four segment registers CS, DS, SS, and ES are the same as the segment registers found in the Intel 8086 and Intel 286 processors and the FS and GS registers were introduced into the IA-32 Architecture with the Intel386TM family of processors. Segment Registers in 64-Bit Mode In 64-bit mode: CS, DS, ES, SS are treated as if each segment base is 0, regardless of the value of the associated segment descriptor base. This creates a flat address space for code, data, and stack. FS and GS are exceptions. Both segment registers may be used as additional base registers in linear address calculations (in the addressing of local data and certain operating system data structures). Even though segmentation...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online