To round nearest bits 13 and 14 of the mxcsr register

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: or from SSE or SSE2 instructions that operate on MMX registers to x87 FPU instructions should be preceded by execution of the EMMS instruction. 11.6.8 Compatibility of SIMD and x87 FPU Floating-Point Data Types SSE and SSE2 extensions operate on the same single-precision and double-precision floating-point data types that the x87 FPU operates on. However, when operating on these data types, the SSE and SSE2 extensions operate on them in their native format (single-precision or double-precision), in contrast to the x87 FPU which extends them to double extended-precision floating-point format to perform computations and then rounds the result back to a single-precision or double-precision format before writing results to memory. Because the x87 FPU operates on a higher precision format and then rounds the result to a lower precision format, it may return a slightly different result when performing the same operation on the same single-precision or double-precision floating-point values than is returned by the SSE and SSE2 extensions. The difference occurs only in the least-significant bits of the significand. 11.6.9 Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions and Data SSE and SSE2 extensions define typed operations on packed and scalar floatingpoint data types and on 128-bit SIMD integer data types, but IA-32 processors do not enforce this typing at the architectural level. They only enforce it at the microarchitectural level. Therefore, when a Pentium 4 or Intel Xeon processor loads a packed or scalar floating-point operand or a 128-bit packed integer operand from memory into an XMM register, it does not check that the actual data being loaded matches the data type specified in the instruction. Likewise, when the processor performs an 11-32 Vol. 1 PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2) arithmetic operation on the data in an XMM register, it does not check that the data being operated on matches the data type specified in the instruction. As a general rule, because data typing of SIMD floating-point and integer data types is not enforced at the architectural level, it is the responsibility of the programmer, assembler, or compiler to insure that code enforces data typing. Failure to enforce correct data typing can lead to computations that return unexpected results. For example, in the following code sample, two packed single-precision floating-point operands are moved from memory into XMM registers (using MOVAPS instructions); then a double-precision packed add operation (using the ADDPD instruction) is performed on the operands: movaps xmm0, [eax] ; EAX register contains pointer to packed ; single-precision floating-point operand movaps addpd xmm1, [ebx] xmm0, xmm1 Pentium 4 and Intel Xeon processors execute these instructions without generating an invalid-operand exception (#UD) and will produce the expected results in register XMM0 (that is, the high and low 64-bits of each register will be treated...
View Full Document

This note was uploaded on 10/01/2013 for the course CPE 103 taught by Professor Watlins during the Winter '11 term at Mississippi State.

Ask a homework question - tutors are online