When the intermediate results of the computation are

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: as a corresponding flag bit (IE, ZE, OE, UE, DE, or PE) and mask bit (IM, ZM, OM, UM, DM, or PM). When one or more floating-point exception conditions are detected, the processor sets the appropriate flag bits, then takes one of two possible courses of action, depending on the settings of the corresponding mask bits: Mask bit set. Handles the exception automatically, producing a predefined (and often times usable) result, while allowing program execution to continue undisturbed. Mask bit clear. Invokes a software exception handler to handle the exception. The masked (default) responses to exceptions have been chosen to deliver a reasonable result for each exception condition and are generally satisfactory for most floating-point applications. By masking or unmasking specific floating-point exceptions, programmers can delegate responsibility for most exceptions to the processor and reserve the most severe exception conditions for software exception handlers. Because the exception flags are "sticky," they provide a cumulative record of the exceptions that have occurred since they were last cleared. A programmer can thus mask all exceptions, run a calculation, and then inspect the exception flags to see if any exceptions were detected during the calculation. In the IA-32 architecture, floating-point exception flag and mask bits are implemented in two different locations: x87 FPU status word and control word. The flag bits are located at bits 0 through 5 of the x87 FPU status word and the mask bits are located at bits 0 through 5 of the x87 FPU control word (see Figures 8-4 and 8-6). MXCSR register. The flag bits are located at bits 0 through 5 of the MXCSR register and the mask bits are located at bits 7 through 12 of the register (see Figure 10-3). Although these two sets of flag and mask bits perform the same function, they report on and control exceptions for different execution environments within the processor. The flag and mask bits in the x87 FPU status and control words control exception reporting and masking for computations performed with the x87 FPU instructions; the companion bits in the MXCSR register control exception reporting and masking for SIMD floating-point computations performed with the SSE/SSE2/SSE3 instructions. Note that when exceptions are masked, the processor may detect multiple exceptions in a single instruction, because it continues executing the instruction after performing its masked response. For example, the processor can detect a denormalized operand, perform its masked response to this exception, and then detect numeric underflow. See Section 4.9.2, "Floating-Point Exception Priority," for a description of the rules for exception precedence when more than one floating-point exception condition is detected for an instruction. Vol. 1 4-25 DATA TYPES 4.9.1 Floating-Point Exception Conditions The following sections describe the various conditions that cause a floating-point exception to be generate...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online