MATH 241-Partial Differential Equations(Homework#8)Fall Semester, 2020M. Carchidi———————————————————————————————————————Problem#1(25 Points) -Why Not A Regular Sturm-Liouville Problema.) (5 points) While solving a regular Sturm-Liouville Problem a student found eigenvaluesnsatisfying the equation 100nsin1/n1. What is wrong with this result?b.) (5 points) While solving a regular Sturm-Liouville Problem another student foundeigenvalues given bynn2and corresponding eigenfunctions given byunxsinnx3forn1,2,3,…, and 0x1. What is wrong with this result?c.) (5 points) While solving a regular Sturm-Liouville Problem another student foundeigenvalues given bynnand corresponding eigenfunctions given byunxsinnxforn1,2,3,…, and 0x1. What is wrong with this result?d.) (5 points) While solving a regular Sturm-Liouville Problem another student foundeigenvaluesnto satisfy the equationnsin1/ncos1/n. What is wrong with thisresult?e.) (5 points) While solving a Regular Sturm-Liouville Problem on the interval 0x1, astudent claims to have determinednnfor the eigenvalues, with correspondingeigenfunctionsnxsin2nxforn1,2,3,....Explain why the student must be mistaken.———————————————————————————————————————Problem#2(20 Points) -Orthogonal Seriesa.) (10 Points) Show that the functionsnxsinnx2, forn1,2,3,..., form areorthogonalset with respect to the “dot” productfg01fxgxxdx.b.) (10 Points) Use this property to then determine an expression forcnif a functionhxisexpanded ashx∑n1cnnxfor 0x1 and compute thecn’s for the special case whenhxx2. Then make plotsofhxagainsthmx∑nmcnnxfor 0x1 and form1,2,3,4,5,10 and 20 and comment on your results.1———————————————————————————————————————